Page 73 - IJB-3-1
P. 73

Swee  Leong  Sing,  Shuai  Wang,  Shweta  Agarwala,  et al.
















                                         (A)                                        (B)
















                                         (C)                                         (D)

            Figure 3. Micro-CT images of biphasic scaffolds (A) cpTi (B) TiTa, and SEM images of (C) cpTi and (D) TiTa, showing infiltration of
            Type 1 collagen into the pores


            study,  the  feasibility  of  forming  cpTi-collagen  and   tilage and subchondral bone regeneration. Knee Surgery
            TiTa-collagen biphasic scaffolds has been shown. Fu-    Sports Traumatology Arthroscopy, vol.20(6): 1182±1191.
            ture  studies  will  aim  to  optimize  the  designs  and   https://doi.org/10.1007/s00167-011-1655-1
            evaluation with in vitro cell culture experiment will be   4.   Wang S, Taraballi F, Tan L P, et al., 2012, Human kera-
            carried out. It is anticipated that scaffolds can be tai-  tin hydrogels support fibroblast attachment and prolifer-
            lored  to  better  suit  the  biochemical  and  mechanical   ation in vitro. Cell and Tissue Research, vol.347(3): 795±
            requirements for osteochondral tissue regeneration.     802.
                                                                    https://doi.org/10.1007/s00441-011-1295-2
            Conflict of Interest and Funding                    5.   Wang S, Wang Z, Foo S E M, et al., 2015, Culturing Fi-
                                                                    broblasts  in  3D  Human  Hair  Keratin  Hydrogels.  ACS
            The authors declare no conflict of interest.
                                                                    Applied Materials & Interfaces, vol.7(9): 5187±5198.
            References                                              https://doi.org/10.1021/acsami.5b00854
                                                                6.   Hollister S J, 2005, Porous scaffold design for tissue en-
              1.   Csaki  C,  Schneider  P  R A ,  and  Shakibaei  M,  2008,   gineering. Nature Materials, vol.4(7): 518±524.
                 Mesenchymal stem cells as a potential pool for cartilage   https://doi.org/10.1038/nmat1421
                 tissue  engineering.  Annals of Anatomy-Anatomischer   7.   Duan X, Zhu X, Dong Z, et al., 2013, Repair of large
                 Anzeiger, vol.190(5): 395±412.                     osteochondral  defects  in  a  beagle  model  with  a  novel
                 https://doi.org/10.1016/j.aanat.2008.07.007        type  I c ollagen/glycosaminoglycan-porous  titanium  bi-
              2.   Kon E, Filardo G, Di Martino A, et al., 2014, Clinical   phasic scaffold. Materials Science & Engineering C-
                 results  and  MRI  evolution  of  a  nano-composite  multi-  Materials for Biological Applications,  vol.33(7):  3951±
                 layered biomaterial for osteochondral regeneration at 5   3957.
                 years. American Journal of Sports Medicine, vol.42(1):   https://doi.org/10.1016/j.msec.2013.05.040
                 158±165.                                       8.   Nover A B, Lee S L, Georgescu M S, et al., 2015, Po-
                 https://doi.org/10.1177/0363546513505434           rous titanium bases for osteochondral tissue engineering.
              3.   Panseri  S,  Russo  A,  Cunha  C,  et al.,  2012,  Osteo-  Acta Biomaterialia, vol.27: 286±293.
                 chondral tissue engineering approaches for articular car-  https://doi.org/10.1016/j.actbio.2015.08.045
                                        International Journal of Bioprinting (2017)–Volume 3, Issue 1      69
   68   69   70   71   72   73   74   75   76   77   78