Page 68 - IJB-3-1
P. 68

Caroline  Murphy,  Krishna  Kolan,  Wenbin  Li,  et  al.


                 http://dx.doi.org/10.1016/j.biomaterials.2010.05.055   marrow and adipose tissue. Journal of Cellular Biochem-
             15. Yan J, Huang Y, Chrisey D B, et al., 2013, Laser-assisted  istry, vol.99(5): 1285–1297.
                 printing  of  alginate  long  tubes  and  annular  constructs.  http://dx.doi.org/10.1002/jcb.20904
                 Biofabrication, vol.5(1): 15002.              27. Wagner  W,  Wein  F,  Seckinger  A,  et  al.,  2005,  Com-
                 http://dx.doi.org/10.1088/1758-5082/5/1/015002    parative  characteristics  of  mesenchymal  stem  cells  from
             16. Chang  C C,   Boland  E  D,  Williams  S  K,  et  al.,  2011,  human  bone  marrow,  adipose  tissue,  and  umbilical  co-
                 Direct-write  bioprinting  three-dimensional  biohybrid  rd  blood.  Experimental  Hematology,  vol.33(11):  1402–
                 systems  for  future  regenerative  therapies.  Journal  of  1416.
                 Biomedical  Materials  Research  Part  B:  Applied  Bio-  http://dx.doi.org/10.1016/j.exphem.2005.07.003
                 materials, vol.98B(1): 160–170.               28. Sakaguchi  Y,  Sekiya  I,  Yagishita  K,  et  al.,  2005,
                 http://dx.doi.org/10.1002/jbm.b.31831             Comparison  of  human  stem  cells  derived  from  various
             17. Ozbolat I T  and Hospodiuk  M, 2016, Current advances  mesenchymal  tissues:  superiority  of  synovium  as  a  cell
                 and  future  perspectives  in  extrusion-based  bioprinting.  source. Arthritis Rheumatology, vol.52(8): 2521–2529.
                 Biomaterials, vol.76:321–343.                     http://dx.doi.org/10.1002/art.21212
                 http://dx.doi.org/10.1016/j.biomaterials.2015.10.076  29. D’Andrea F, De Francesco F, Ferraro G A, et al., 2008,
             18. Murphy S V and Atala A, 2014, 3D bioprinting of tissues  Large-scale  production  of hum an  adipose  tissue  from
                 and organs. Nature Biotechnology, vol.32(8): 773–785.  stem  cells:  a  new  tool  for r egenerative  medicine  and
                 http://dx.doi.org/10.1038/nbt.2958                tissue  banking.  Tissue  Engineering  Part  C  Methods,
             19. Kang H-W, Lee S J, Ko I K, et al., 2015, A 3D bioprinted  vol.14(3): 233–242.
                 complex structure for engineering the muscle–tendon unit.  http://dx.doi.org/10.1089/ten.tec.2008.0108
                 Biofabrication, vol.7(3): 35003.              30. Casteilla  L  and  Dani  C,  2006,  Adipose  tissue-derived
                 http://dx.doi.org/10.1088/1758-5090/7/3/035003    cells: from physiology to regenerative medicine. Diabetes
             20. Wu  Z,  Su  X,  Xu  Y,  et  al.,  2016,  Bioprinting  three-   & Metabolism, vol.32(5 Pt 1): 393–401.
                 dimensional cell-laden tissue constructs with controllable  http://dx.doi.org/DM-11-2006-32-5-1262-3636-101019-2
                 degradation. Science Reports, vol.6: 24474.       00519820
                 http://dx.doi.org/10.1038/srep24474           31. Lee J T Y, Leng Y, Chow K L, et al., 2011, Cell culture
             21. Lin  Y,  Brown  R  F,  Jung  S  B,  et  al.,  2014,  Angiogenic  medium as an alternative to conventional simulated body
                 effects  of  borate  glass  microfibers  in  a  rodent  model.  fluid. Acta Biomaterialia, vol.7(6): 2615–2622
                 Journal  of  Biomedical  Materials  Research  Part  A,  http://dx.doi.org/10.1016/j.actbio.2011.02.034
                 vol.102(12): 4491–4499.                       32. Miller-Chou  B  A  and  Koenig  J  L,  2003,  A  review  of
                 http://dx.doi.org/10.1002/jbm.a.35120             polymer  dissolution.  Progress  in  Polymer  Science,
             22. Jung S B and Day D E, 2011, Revolution in wound care?  vol.28(8): 1223–1270.
                 Inexpensive,  easy-to-use  cotton  candy-like  glass  fibers  http://dx.doi.org/10.1016/S0079-6700(03)00045-5
                 appear to speed healing in initial venous stasis wound trial.  33. Woodruff M A and Hutmacher D W, 2010, The return of
                 The American Ceramic Society Bulletin, vol.90(4): 25–29.  a  forgotten  polymer  —  polycaprolactone  in  the  21st
             23. Salem  H  K  and  Thiemermann  C,  2009,  Mesenchymal  century. Progress in Polymer Science, vol.35(10): 1217–
                 stromal  cells:  current  understanding  and  clinical  status.  1256.
                 Stem Cells, vol.28(3): 585–596.                   http://dx.doi.org/10.1016/j.progpolymsci.2010.04.002
                 http://dx.doi.org/10.1002/stem.269            34. Korpela  J,  Kokkari  A,  Korhonen  H,  et  al.,  2013,  Biod-
             24. Wu Y, Chen L, Scott P G, et al., 2007, Mesenchymal stem  egradable and bioactive porous scaffold structures prep-
                 cells enhance wound healing through differentiation and  ared using fused deposition modeling. Journal of Biom-
                 angiogenesis. Stem Cells, vol.25(10): 2648–2659.  edical Materials Research Part B: Applied Biomaterials,
                 http://dx.doi.org/10.1634/stemcells.2007-0226     vol.101B(4): 610–619.
             25. De Ugarte D A, Morizono K, Elbarbary A, et al., 2003,  http://dx.doi.org/10.1002/jbm.b.32863
                 Comparison  of  multi-lineage  cells  from  human  adipose  35. Mohammadkhah A, Marquardt L M, Sakiyama-Elbert S
                 tissue and bone marrow. Cells Tissues Organs, vol.174(3):  E,  et  al.,  2015,  Fabrication  and  characterization  of
                 101–109.                                          poly-(ε)-caprolactone and bioactive glass composites for
                 http://dx.doi.org/10.1159/000071150               tissue  engineering  applications.  Materials  Science  and
             26. Izadpanah  R,  Trygg  C,  Patel  B,  et  al.,  2006,  Biologic  Engineering: C, vol.49: 632–639.
                 properties of mesenchymal stem cells derived from bone  http://dx.doi.org/10.1016/j.msec.2015.01.06




            64                          International Journal of Bioprinting (2017)–Volume 3, Issue 1
   63   64   65   66   67   68   69   70   71   72   73