Page 74 - IJB-3-1
P. 74

Fabrication of titanium based biphasic scaffold using selective laser melting and collagen immersion

              9.   Chua  C  K,  Yeong  W  Y,  and  Leong  K  F,  2005,  Rapid   lic  implants:  A review  on  processes,  materials and  de-
                 prototyping in tissue engineering: A state-of-the-art re-  signs.  Journal of Orthopaedic  Research,  vol.34(3):
                 port. Virtual 0odeling and 5apid 0anufacturing, 19±27.   ±385.
              10.  Yeong, W Y, Chua C K, Leong K F, et al., 2005, Devel-  https://doi.org/10.1002/jor.23075
                 opment  of s caffolds  for t issue  engineering  using  a  3D   20.  Sing, S L, Yeong W Y, Chua C K, et al., 2013, Classical
                 inkjet model maker. Virtual Modelling and Rapid Ma-  lamination theory applied on parts produced by selective
                 nufacturing-advanced Research in Virtual and Rapid   laser  melting  in  High  Value  Manufacturing:  Advanced
                 Prototyping, 115±118.                              Research in Virtual and Rapid Prototyping, 77±82.
              11.  Lee J M, Zhang M, and Yeong W Y, 2016, Characteriza-  21.  Thijs L, Sistiaga M L M, Wauthle R, et al., 2013, Strong
                 tion and evaluation of 3D printed microfluidic chip for   morphological and crystallographic texture and resulting
                 cell  processing.  Microfluidics and Nanofluidics,  vol.     yield strength anisotropy in selective laser melted tanta-
                 (5).                                               lum. Acta Materialia, vol.61(12): 4657±4668.
                 https://doi.org/10.1007/s10404-015-1688-8          https://doi.org/10.1016/j.actamat.2013.04.036
              12.  Cheng X Y, Li S J, Murr L E, et al., 2012, Compression   22.  Yap C Y, Chua C K, and Dong Z L, 2016, An effective
                 deformation behavior of Ti-6A1-4V alloy with cellular   analytical model of selective laser melting. Virtual and
                 structures fabricated by electron beam melting. Journal   Physical Prototyping, vol.11(1): 21±26.
                 of the Mechanical Behavior of Biomedical Materials, YRO  https://doi.org/10.1080/17452759.2015.1133217
                 16: 153±162.                                   23.  Yap C Y, Chua C K, Dong Z L, et al., 2015, Review of
                 https://doi.org/10.1016/j.jmbbm.2012.10.005        selective laser melting: Materials and applications. Ap-
              13.  Sallica-Leva E, Jardini A L, and Fogagnolo J B, 2013,   plied Physics Reviews, vol.2(4): 041101.
                 Microstructure  and  mechanical  behavior  of  porous   https://doi.org/10.1063/1.4935926
                 Ti-6Al-4V  parts  obtained  by  selective  laser  melting.   24.  Ciocca L, Fantini M, De Crescenzio F, et al., 2011, Di-
                 Journal of the Mechanical Behavior of Biomedical Ma-  rect metal laser sintering (DMLS) of a customized tita-
                 terials, vol.26: 98±108.                           nium mesh for prosthetically guided bone regeneration
                 https://doi.org/10.1016/j.jmbbm.2013.05.011        of atrophic maxillary arches. Medical & Biological En-
              14.  Sing, S L, Yeong W Y, Wiria F E, et al., 2016, Charac-  gineering & Computer, vol.49(11): 1347±1352.
                 terization  of  Witanium  Oattice  Vtructures  Iabricated  by   https://doi.org/10.1007/s11517-011-0813-4
                 Velective Oaser Pelting Xsing an Ddapted Fompressive   25.  Li R, Liu J, Shi Y, et al., 2010, 316L Stainless Vteel with
                 West Pethod. Experimental Mechanics, vol.56: 735±748.   Jradient Sorosity Iabricated by Velective Oaser Pelting.
                 https://doi.org/10.1007/s11340-015-0117-y          Journal of Materials Engineering and Performance, vol.
              15.  Sun,  J  F,  Yang  Y  Q,  and  Wang  D,  2013,  Mechanical   19(5): 666±671.
                 properties  of  a  Ti6Al4V  porous  structure  produced  by   https://doi.org/10.1007/s11665-009-9535-2
                 selective  laser  melting.  Materials & Design,  vol.49:   26.  Yan  C, Hao L, Hussein A, et al., 2014, Advanced light-
                 545±552.                                           weight  316L  stainless  steel  cellular  lattice  structures
                 https://doi.org/10.1016/j.matdes.2013.01.038       fabricated  via  selective laser melting. Materials & De-
              16.  Szymczyk P, Junka A, Ziolkowski G, et al., 2013, The   sign, vol.55: 533±541.
                 ability of  S.aureus  to  form  biofilm  on  the TI-6Al-7Nb   https://doi.org/10.1016/j.matdes.2013.10.027
                 scaffolds produced by Selective Laser Melting and subje-  27.  Facchini L, Magalini E, Robotti P, et al., 2010, Ductility
                 cted to the different types of surface modifications. Acta   of a Ti-6Al-4V alloy produced by selective laser melting
                 of Bioengineering and Biomechanics, vol.15(1): 69±76.   of prealloyed powders. Rapid Prototyping Journal, vol.
              17.  Yeong W Y, Yap C Y, Mapar M, et al., 2013, State-of-   16(6): 450±459.
                 the-art  review  on  selective  laser  melting  of  ceramics.   https://doi.org/10.1108/13552541011083371
                 High Value Manufacturing: Advanced Research in Vir-  28.  Murr L E, Quinones S A, Gaytan S M, et al., 2009, Mi-
                 tual and Rapid Prototyping, 65±70.                 crostructure  and  mechanical  behavior  of  Ti-6Al-4V
              18.  Liu Z H, Zhang D Q, Sing S L, et al., 2014, Interfacial   produced by rapid-layer manufacturing, for biomedical
                 characterization  of S LM  parts  in  multi-material  proc-  applications.  Journal of the Mechanical Behavior of
                 essing:  Metallurgical  diffusion  between  316L  stainless   Biomedical Materials, vol.2(1): 20±32.
                 steel and C18400 copper alloy. Materials Characteriza-  https://doi.org/10.1016/j.jmbbm.2008.05.004
                 tion, vol.94: 116±125.                         29.  Vrancken B, Thijs L, Kruth J P, et al., 2012, Heat treat-
                 https://doi.org/10.1016/j.matchar.2014.05.001      ment of Ti6Al4V produced by Velective Oaser Pelting:
              19.  Sing S L, An J, Yeong W Y, et al., 2015, Laser and elec-  Microstructure  and  mechanical  properties.  Journal of
                 tron-beam powder-bed additive manufacturing of metal-  Alloys and Compounds, vol.541: 177±185.

            70                          International Journal of Bioprinting (2017)–Volume 3, Issue 1
   69   70   71   72   73   74   75   76   77   78   79