Page 74 - IJB-3-1
P. 74
Fabrication of titanium based biphasic scaffold using selective laser melting and collagen immersion
9. Chua C K, Yeong W Y, and Leong K F, 2005, Rapid lic implants: A review on processes, materials and de-
prototyping in tissue engineering: A state-of-the-art re- signs. Journal of Orthopaedic Research, vol.34(3):
port. Virtual 0odeling and 5apid 0anufacturing, 19±27. ±385.
10. Yeong, W Y, Chua C K, Leong K F, et al., 2005, Devel- https://doi.org/10.1002/jor.23075
opment of s caffolds for t issue engineering using a 3D 20. Sing, S L, Yeong W Y, Chua C K, et al., 2013, Classical
inkjet model maker. Virtual Modelling and Rapid Ma- lamination theory applied on parts produced by selective
nufacturing-advanced Research in Virtual and Rapid laser melting in High Value Manufacturing: Advanced
Prototyping, 115±118. Research in Virtual and Rapid Prototyping, 77±82.
11. Lee J M, Zhang M, and Yeong W Y, 2016, Characteriza- 21. Thijs L, Sistiaga M L M, Wauthle R, et al., 2013, Strong
tion and evaluation of 3D printed microfluidic chip for morphological and crystallographic texture and resulting
cell processing. Microfluidics and Nanofluidics, vol. yield strength anisotropy in selective laser melted tanta-
(5). lum. Acta Materialia, vol.61(12): 4657±4668.
https://doi.org/10.1007/s10404-015-1688-8 https://doi.org/10.1016/j.actamat.2013.04.036
12. Cheng X Y, Li S J, Murr L E, et al., 2012, Compression 22. Yap C Y, Chua C K, and Dong Z L, 2016, An effective
deformation behavior of Ti-6A1-4V alloy with cellular analytical model of selective laser melting. Virtual and
structures fabricated by electron beam melting. Journal Physical Prototyping, vol.11(1): 21±26.
of the Mechanical Behavior of Biomedical Materials, YRO https://doi.org/10.1080/17452759.2015.1133217
16: 153±162. 23. Yap C Y, Chua C K, Dong Z L, et al., 2015, Review of
https://doi.org/10.1016/j.jmbbm.2012.10.005 selective laser melting: Materials and applications. Ap-
13. Sallica-Leva E, Jardini A L, and Fogagnolo J B, 2013, plied Physics Reviews, vol.2(4): 041101.
Microstructure and mechanical behavior of porous https://doi.org/10.1063/1.4935926
Ti-6Al-4V parts obtained by selective laser melting. 24. Ciocca L, Fantini M, De Crescenzio F, et al., 2011, Di-
Journal of the Mechanical Behavior of Biomedical Ma- rect metal laser sintering (DMLS) of a customized tita-
terials, vol.26: 98±108. nium mesh for prosthetically guided bone regeneration
https://doi.org/10.1016/j.jmbbm.2013.05.011 of atrophic maxillary arches. Medical & Biological En-
14. Sing, S L, Yeong W Y, Wiria F E, et al., 2016, Charac- gineering & Computer, vol.49(11): 1347±1352.
terization of Witanium Oattice Vtructures Iabricated by https://doi.org/10.1007/s11517-011-0813-4
Velective Oaser Pelting Xsing an Ddapted Fompressive 25. Li R, Liu J, Shi Y, et al., 2010, 316L Stainless Vteel with
West Pethod. Experimental Mechanics, vol.56: 735±748. Jradient Sorosity Iabricated by Velective Oaser Pelting.
https://doi.org/10.1007/s11340-015-0117-y Journal of Materials Engineering and Performance, vol.
15. Sun, J F, Yang Y Q, and Wang D, 2013, Mechanical 19(5): 666±671.
properties of a Ti6Al4V porous structure produced by https://doi.org/10.1007/s11665-009-9535-2
selective laser melting. Materials & Design, vol.49: 26. Yan C, Hao L, Hussein A, et al., 2014, Advanced light-
545±552. weight 316L stainless steel cellular lattice structures
https://doi.org/10.1016/j.matdes.2013.01.038 fabricated via selective laser melting. Materials & De-
16. Szymczyk P, Junka A, Ziolkowski G, et al., 2013, The sign, vol.55: 533±541.
ability of S.aureus to form biofilm on the TI-6Al-7Nb https://doi.org/10.1016/j.matdes.2013.10.027
scaffolds produced by Selective Laser Melting and subje- 27. Facchini L, Magalini E, Robotti P, et al., 2010, Ductility
cted to the different types of surface modifications. Acta of a Ti-6Al-4V alloy produced by selective laser melting
of Bioengineering and Biomechanics, vol.15(1): 69±76. of prealloyed powders. Rapid Prototyping Journal, vol.
17. Yeong W Y, Yap C Y, Mapar M, et al., 2013, State-of- 16(6): 450±459.
the-art review on selective laser melting of ceramics. https://doi.org/10.1108/13552541011083371
High Value Manufacturing: Advanced Research in Vir- 28. Murr L E, Quinones S A, Gaytan S M, et al., 2009, Mi-
tual and Rapid Prototyping, 65±70. crostructure and mechanical behavior of Ti-6Al-4V
18. Liu Z H, Zhang D Q, Sing S L, et al., 2014, Interfacial produced by rapid-layer manufacturing, for biomedical
characterization of S LM parts in multi-material proc- applications. Journal of the Mechanical Behavior of
essing: Metallurgical diffusion between 316L stainless Biomedical Materials, vol.2(1): 20±32.
steel and C18400 copper alloy. Materials Characteriza- https://doi.org/10.1016/j.jmbbm.2008.05.004
tion, vol.94: 116±125. 29. Vrancken B, Thijs L, Kruth J P, et al., 2012, Heat treat-
https://doi.org/10.1016/j.matchar.2014.05.001 ment of Ti6Al4V produced by Velective Oaser Pelting:
19. Sing S L, An J, Yeong W Y, et al., 2015, Laser and elec- Microstructure and mechanical properties. Journal of
tron-beam powder-bed additive manufacturing of metal- Alloys and Compounds, vol.541: 177±185.
70 International Journal of Bioprinting (2017)–Volume 3, Issue 1

