Page 75 - IJB-3-1
P. 75
Swee Leong Sing, Shuai Wang, Shweta Agarwala, et al.
https://doi.org/10.1016/j.jallcom.2012.07.022 https://doi.org/10.1039/C3BM00199G
30. Thijs L, Verhaeghe F, Craeghs T, et al., 2010, A study of 39. Nover A B, Lee S L, Georqescu M S, et al., 2015, Po-
the microstructural evolution during selective laser rous titanium bases for osteochondral tissue engineering.
melting of Ti-6Al-4V. Acta Materialia, vol.58(9): 3303± Acta Biomaterialia, vol.27: 286±293.
3312. https://doi.org/10.1016/j.actbio.2015.08.045
https://doi.org/10.1016/j.actamat.2010.02.004 40. Zhao X, He J, Xu F, et al., 2016, Electrohydrodynamic
31. Chlebus E, Kuznicka B, Kurzynowski T, et al., 2011, printing: a potential tool for high-resolution hydro-
Microstructure and mechanical behaviour of Ti-6Al-7Nb gel/cell patterning. Virtual and Physical Prototyping, vol.
alloy produced by selective laser melting. Materials 11(1): 57±63.
Characterization, vol.62(5): 488±495. https://doi.org/10.1080/17452759.2016.1139378
https://doi.org/10.1016/j.matchar.2011.03.006 41. Getgood A M J, Kew S J, Brooks R, et al., 2012,
32. Rotaru H, Armencea G, Spirchez D, et al., 2013, In Evaluation of early-stage osteochondral defect repair
vivo behavior of surface modified Ti6Al7Nb alloys used using a biphasic scaffold based on a collagen-glycos-
in selective laser melting for custom-made implants. A aminoglycan biopolymer in a caprine model. The Knee,
preliminary study. Romanian Journal of Morphology vol.19(4): 422±430.
and Embryology, 54(3 SUPPL.): p. 791±796. https://doi.org/10.1016/j.knee.2011.03.011
33. Sing S L, Yeong W Y, and Wiria F E, 2016, Selective 42. Nemat-Nasser, S., Guo W G, and Cheng J Y, 1999, Me-
laser melting of titanium alloy with 50 wt% tantalum: chanical properties and deformation mechanisms of a
Microstructure and mechanical properties. Journal of commercially pure titanium. Acta Materialia, vol.47(13):
Alloys and Compounds, vol.660: 461±470. 3705±3720.
https://doi.org/10.1016/j.jallcom.2015.11.141 https://doi.org/10.1016/S1359-6454(99)00203-7
34. Zhou YL, Niinomi M, and Akahori T, 2004, Effects of 43. Chichili D R, Ramesh K T, and Hemker K J, 1998, The
Ta content on Young's modulus and tensile properties high strain-rate response of alpha-titanium: experiments,
of binary Ti-Ta alloys for biomedical applications. Ma- deformation mechanisms and modeling. Acta Materialia,
terials Science and Engineering A, vol.371: 283±290. vol.46(3): 1025±1043.
https://doi.org/10.1016/j.msea.2003.12.011 https://doi.org/10.1016/S1359-6454(97)00287-5
35. Zhou Y L, Ninomi M, Akahori T, et al., 2007, Com- 44. Gurao N P, Kapoor R, and Suwas S, 2011, Deforma-
parison of Yarious Sroperties between Witanium-Wantalum tion behavior of commerically pure titanium at extreme
alloy and pure titanium for biomedical applications. strain rates. Acta Materialia, vol.59(9): 3431±3446.
Materials Transactions, vol.48(3): 380±384. https://doi.org/10.1016/j.actamat.2011.02.018
https://doi.org/10.2320/matertrans.48.380 45. Zysset P K Z, Guo X E, Hoffler C E, et al., 1999, Elastic
36. Yousefi A M, Hoque M E, Prasad R G S V, et al., 2015, modulus and hardness of c ortical and trabecular bone
Current strategies in multiphasic scaffold design for os- lamellae measured by nanoindentation in the human
teochondral tissue engineering: A review. Journal of femur. Journal of Biomechanics, vol.32(10): 1005±1012.
Biomedical Materials Research Part A, vol.103(7): 2460 https://doi.org/10.1016/S0021-9290(99)00111-6
±2481. 46. Piotrowski B, Baptista A A, Patoor E, et al., 2014, In-
https://doi.org/10.1002/jbm.a.35356 teraction of bone-dental implant with new ultra low
37. Duan X, Zhu X, Dong X, et al., 2013, Repair of large modulus alloy using a numerical approach. Material
osteochondral defects in a beagle model with a novel Science and Engineering: C, vol.38: 151±160.
type I c ollagen/glycosaminoglycan-porous titanium bi- https://doi.org/10.1016/j.msec.2014.01.048
phasic scaffold. Materials Science and Engineering C, 47. Traini T, Mangano C, Sammons R L, et al., 2008, Direct
vol.33: 3951±3957. laser metal sintering as a new approach to fabrication of
https://doi.org/10.1016/j.msec.2013.05.040 an isoelastic functionally graded material for manufac-
38. Zhao C, Zhang H, Cai B, et al., 2012, Preparation of ture of porous titanium dental implants. Dental Materi-
porous PLGA/Ti biphasic scaffold and osteochondral als, vol.24(11): 1525±1533.
defect repair. Biomaterials Science, vol.7(1): 703±710. https://doi.org/10.1016/j.dental.2008.03.029
International Journal of Bioprinting (2017)–Volume 3, Issue 1 71

