Page 75 - IJB-3-1
P. 75

Swee  Leong  Sing,  Shuai  Wang,  Shweta  Agarwala,  et al.

                 https://doi.org/10.1016/j.jallcom.2012.07.022      https://doi.org/10.1039/C3BM00199G
              30.  Thijs L, Verhaeghe F, Craeghs T, et al., 2010, A study of   39.  Nover A B, Lee S L, Georqescu M S, et al., 2015, Po-
                 the  microstructural  evolution  during  selective  laser   rous titanium bases for osteochondral tissue engineering.
                 melting of Ti-6Al-4V. Acta Materialia, vol.58(9): 3303±   Acta Biomaterialia, vol.27: 286±293.
                 3312.                                              https://doi.org/10.1016/j.actbio.2015.08.045
                 https://doi.org/10.1016/j.actamat.2010.02.004   40.  Zhao X, He J, Xu F, et al., 2016, Electrohydrodynamic
              31.  Chlebus  E,  Kuznicka  B,  Kurzynowski  T,  et al.,  2011,   printing:  a  potential  tool  for  high-resolution  hydro-
                 Microstructure and mechanical behaviour of Ti-6Al-7Nb   gel/cell patterning. Virtual and Physical Prototyping, vol.
                 alloy  produced  by  selective  laser  melting.  Materials   11(1): 57±63.
                 Characterization, vol.62(5): 488±495.              https://doi.org/10.1080/17452759.2016.1139378
                 https://doi.org/10.1016/j.matchar.2011.03.006   41.  Getgood  A  M  J,  Kew  S  J,  Brooks  R,  et al.,  2012,
              32.  Rotaru  H,  Armencea  G,  Spirchez  D,  et al.,  2013,  In   Evaluation  of  early-stage  osteochondral  defect  repair
                 vivo behavior of surface modified Ti6Al7Nb alloys used   using  a  biphasic  scaffold  based  on a   collagen-glycos-
                 in selective laser melting for custom-made implants. A   aminoglycan biopolymer in a caprine model. The Knee,
                 preliminary  study.  Romanian Journal of Morphology   vol.19(4): 422±430.
                 and Embryology, 54(3 SUPPL.): p. 791±796.          https://doi.org/10.1016/j.knee.2011.03.011
              33.  Sing S L, Yeong W Y, and Wiria F E, 2016, Selective   42.  Nemat-Nasser, S., Guo W G, and Cheng J Y, 1999, Me-
                 laser  melting  of  titanium  alloy with  50  wt%  tantalum:   chanical  properties  and  deformation  mechanisms  of  a
                 Microstructure  and  mechanical  properties.  Journal of   commercially pure titanium. Acta Materialia, vol.47(13):
                 Alloys and Compounds, vol.660: 461±470.            3705±3720.
                 https://doi.org/10.1016/j.jallcom.2015.11.141      https://doi.org/10.1016/S1359-6454(99)00203-7
              34.  Zhou YL, Niinomi M, and Akahori T, 2004, Effects of   43.  Chichili D R, Ramesh K T, and Hemker K J, 1998, The
                 Ta  content  on  Young's  modulus  and  tensile  properties   high strain-rate response of alpha-titanium: experiments,
                 of binary Ti-Ta alloys for biomedical applications. Ma-  deformation mechanisms and modeling. Acta Materialia,
                 terials Science and Engineering A, vol.371: 283±290.   vol.46(3): 1025±1043.
                 https://doi.org/10.1016/j.msea.2003.12.011         https://doi.org/10.1016/S1359-6454(97)00287-5
              35.  Zhou  Y  L,  Ninomi  M,  Akahori  T,  et al.,  2007,  Com-  44.  Gurao  N  P,  Kapoor  R,  and  Suwas  S,  2011,  Deforma-
                 parison  of  Yarious  Sroperties  between Witanium-Wantalum  tion behavior of commerically pure titanium at extreme
                 alloy  and  pure  titanium  for  biomedical  applications.  strain rates. Acta Materialia, vol.59(9): 3431±3446.
                 Materials Transactions, vol.48(3): 380±384.        https://doi.org/10.1016/j.actamat.2011.02.018
                 https://doi.org/10.2320/matertrans.48.380      45.  Zysset P K Z, Guo X E, Hoffler C E, et al., 1999, Elastic
              36.  Yousefi A M, Hoque M E, Prasad R G S V, et al., 2015,   modulus  and  hardness  of c ortical  and  trabecular  bone
                 Current strategies in multiphasic scaffold design for os-  lamellae  measured  by  nanoindentation  in  the  human
                 teochondral  tissue  engineering:  A  review.  Journal of   femur. Journal of Biomechanics, vol.32(10): 1005±1012.
                 Biomedical Materials Research Part A,  vol.103(7): 2460   https://doi.org/10.1016/S0021-9290(99)00111-6
                 ±2481.                                         46.  Piotrowski B, Baptista A A, Patoor E, et al., 2014, In-
                 https://doi.org/10.1002/jbm.a.35356                teraction  of  bone-dental  implant  with  new  ultra  low
              37.  Duan X, Zhu X, Dong X, et al., 2013, Repair of large   modulus  alloy  using  a  numerical  approach.  Material
                 osteochondral  defects  in  a  beagle  model  with  a  novel   Science and Engineering: C, vol.38: 151±160.
                 type  I c ollagen/glycosaminoglycan-porous  titanium  bi-  https://doi.org/10.1016/j.msec.2014.01.048
                 phasic  scaffold.  Materials Science and Engineering C,   47.  Traini T, Mangano C, Sammons R L, et al., 2008, Direct
                 vol.33: 3951±3957.                                 laser metal sintering as a new approach to fabrication of
                 https://doi.org/10.1016/j.msec.2013.05.040         an isoelastic functionally graded material for manufac-
              38.  Zhao  C,  Zhang  H,  Cai  B,  et al.,  2012,  Preparation  of   ture of porous titanium dental implants. Dental Materi-
                 porous  PLGA/Ti  biphasic  scaffold  and  osteochondral   als, vol.24(11): 1525±1533.
                 defect repair. Biomaterials Science, vol.7(1): 703±710.   https://doi.org/10.1016/j.dental.2008.03.029










                                        International Journal of Bioprinting (2017)–Volume 3, Issue 1      71
   70   71   72   73   74   75   76   77   78   79   80