Page 86 - IJB-3-1
P. 86
Influence of electrohydrodynamic jetting parameters on the morphology of PCL scaffolds
http://dx.doi.org/10.1063/1.2975834 complex geometries. International Journal of Bioprinting,
17. Padmanabhan T, Kamaraj V, Magwood L, et al. 2011, vol.2(1): 63–71.
Experimental investigation on the operating variables of a http://dx.doi.org/10.18063/IJB.2016.01.005
near-field electrospinning process via response surface 24. Kowalewski T, Bloński S, and Barral S, 2005, Experi-
methodology. Journal of Manufacturing Processes, ments and modelling of e lectrospinning process. Tech-
vol.13(2): 104–112. nical Sciences, vol.53(4).
http://dx.doi.org/10.1016/j.jmapro.2011.01.003 25. Koombhongse S, Liu W, and Reneker D H, 2001, Flat
18. Wei C, and Dong J, 2013, Direct fabrication of high-res- polymer ribbons and other shapes by electrospinning.
olution three-dimensional polymeric scaffolds using elec- Journal of Polymer Science Part B: Polymer Physics,
trohydrodynamic hot jet plotting. Journal of Microme- vol.39(21): 2598–2606.
chanics and Microengineering, vol.23(2): 025017. http://dx.doi.org/10.1002/polb.10015
http://dx.doi.org/10.1088/0960-1317/23/2/025017 26. Woodruff M A and Hutmacher D W, 2010, The return of
19. Park J U, Hardy M, Kang S J, et al. 2007, High-resolu- a forgotten polymer — polycaprolactone in the 21st cen-
tion electrohydrodynamic jet printing. Nature Materials, tury. Progress in Polymer Science, vol.35(10): 1217–1256.
vol.6(10): 782–789. http://dx.doi.org/10.1016/j.progpolymsci.2010.04.002
http://dx.doi.org/10.1038/nmat1974 27. Karageorgiou V and Kaplan D, 2005, Porosity of
20. Kim B H, Onses M S, Lim J B, et al. 2015, High-resolu- 3D biomaterial scaffolds and osteogenesis. Biomaterials,
tion patterns of quantum dots formed by electrohydrody- vol.26(27): 5474–5491.
namic jet printing for light-emitting diodes. Nano Letters, http://dx.doi.org/10.1016/j.biomaterials.2005.02.002
vol.15(2): 969–973. 28. Garg K. and Bowlin G L, 2011, Electrospinning jets and
http://dx.doi.org/10.1021/nl503779e nanofibrous structures. Biomicrofluidics, vol.5(1): 013403.
21. Lee H, Seong B, Kim J, Jang Y, et al. 2014, Direct http://dx.doi.org/10.1063/1.3567097
alignment and patterning of silver nanowires by electro- 29. Lee A, Jin H, Dang H W, et al., 2013, Optimization of
hydrodynamic jet printing. Small, vol.10(19): 3918–3922. experimental parameters to determine the jetting regimes
http://dx.doi.org/10.1002/smll.201400936 in electrohydrodynamic printing. Langmuir, vol.29(44):
22. Croisier F, Duwez A S, Jérôme C, et al. 2012, Mechanical 13630–13639.
testing of electrospun PCL fibers. Acta Biomaterialia, http://dx.doi.org/10.1021/la403111m
vol.8(1): 218–224. 30. Pillay V, Dott C, Choonara Y E, et al., 2013, A review of
http://dx.doi.org/10.1016/j.actbio.2011.08.015 the effect of pr ocessing variables on the fabrication of
23. Wang H, Vijayavenkataraman S, Wu Y, et al. 2016, In- electrospun nanofibers for drug delivery applications.
vestigation of process parameters of electrohydro-dy- Journal of Nanomaterials, vol.13(1): 789289.
namic jetting for 3D printed PCL fibrous scaffolds with http://dx.doi.org/10.1155/2013/789289
82 International Journal of Bioprinting (2017)–Volume 3, Issue 1

