Page 146 - IJB-10-3
        P. 146
     International Journal of Bioprinting                               New challenges in liver tissue engineering
            109. Liu H, Gong Y, Zhang K, et al. Recent advances in   120. Ye S, Boeter JWB, Mihajlovic M, et al. A chemically defined
               decellularized matrix-derived materials for bioink and 3D   hydrogel for human liver organoid culture. Adv Funct Mater.
               bioprinting. Gels. 2023;9(3).                      2020;30(48).
               doi: 10.3390/gels9030195                           doi: 10.1002/adfm.202000893
            110. Monteiro MV, Henriques-Pereira M, Neves BM, Duarte   121. Ma L, Wu Y, Li Y, et al. Current advances on 3D‐bioprinted
               ID, Gaspar VM, Mano JF. Photo-compartmentalized    liver tissue models. Adv Healthc Mater. 2020;9(24).
               decellularized matrix-hyaluronan hybrid units for      doi: 10.1002/adhm.202001517
               pancreatic tumor-stroma modeling.  Adv Funct Mater.   122. Naranjo-Alcazar R, Bendix S, Groth T, Gallego Ferrer G.
               2023;34(6):2305473.                                Research progress in enzymatically cross-linked hydrogels
               doi: 10.1002/adfm.202305473                        as injectable systems for bioprinting and tissue engineering.
            111. Agarwal T, Subramanian B, Maiti TK. Liver tissue   Gels. 2023;9(3):230.
               engineering:  challenges  and  opportunities.  ACS Biomater      doi: 10.3390/gels9030230
               Sci Eng. 2019;5(9):4167-4182.                   123. Naghieh S, Chen X. Printability–a key issue in extrusion-
               doi: 10.1021/acsbiomaterials.9b00745               based bioprinting. J Pharm Anal. 2021;11(5):564-579.
            112. Huang D (Danielle), Gibeley SB, Xu C, et al. Engineering      doi: 10.1016/j.jpha.2021.02.001
               liver microtissues for disease modeling and regenerative   124. Li W, Liu Z, Tang F, et al. Application of 3D bioprinting in
               medicine. Adv Funct Mater. 2020;30(44).            liver diseases. Micromachines. 2023;14(8).
               doi: 10.1002/adfm.201909553                        doi: 10.3390/mi14081648
            113. Trujillo S, Dobre O, Dalby MJ. Salmeron-Sanchez M.   125. Wang Q, Liu J, Yin W, et al. Microscale tissue engineering of
               Mechanotransduction and Growth Factor Signaling    liver lobule models: advancements and applications. Front
               in Hydrogel-Based Microenvironments. Reis RL, eds.   Bioeng Biotechnol. 2023;11.
               In Encyclopedia of Tissue Engineering and Regenerative      doi: 10.3389/fbioe.2023.1303053
               Medicine. Oxford: Academic Press. 2019:87-101.
               doi: 10.1016/B978-0-12-801238-3.11141-9         126. Xie M, Su J, Zhou S, Li J, Zhang K. Application of hydrogels
                                                                  as three-dimensional bioprinting ink for tissue engineering.
            114. Cantini M, Donnelly H, Dalby MJ, Salmeron‐Sanchez M.   Gels. 2023;9(2):88.
               The plot thickens: the emerging role of matrix viscosity in      doi: 10.3390/gels9020088
               cell mechanotransduction. Adv Healthc Mater. 2020;9(8).
               doi: 10.1002/adhm.201901259                     127. Khati V, Ramachandraiah H, Pati F, Svahn HA, Gaudenzi G,
                                                                  Russom A. 3D bioprinting of multi-material decellularized
            115. Rizwan M, Ling C, Guo C, et al. Viscoelastic notch signaling   liver matrix hydrogel at physiological temperatures.
               hydrogel induces liver bile duct organoid growth and   Biosensors. 2022;12(7):521.
               morphogenesis. Adv Healthc Mater. 2022;11(23).     doi: 10.3390/bios12070521
               doi: 10.1002/adhm.202200880
                                                               128. Unagolla JM, Jayasuriya AC. Hydrogel-based 3D bioprinting:
            116. Bruns  H,  Kneser  U,  Holzhüter  S,  et  al.  Injectable  liver:  a   a comprehensive review on cell-laden hydrogels, bioink
               novel approach using fibrin gel as a matrix for culture and   formulations, and future perspectives.  Appl  Mater  Today.
               intrahepatic  transplantation  of hepatocytes.  Tissue Eng.   2020;18:100479.
               2005;11(11-12):1718-1726.                          doi: 10.1016/j.apmt.2019.100479
               doi: 10.1089/ten.2005.11.1718
                                                               129. Gori M, Giannitelli SM, Torre M, et al. Biofabrication
            117. Le Guilcher C, Merlen G, Dellaquila A, et al. Engineered   of hepatic constructs by 3D bioprinting of a cell-laden
               human liver based on pullulan-dextran hydrogel promotes   thermogel:  an  effective  tool  to assess drug-induced
               mice survival after liver failure.  Mater Today Bio.   hepatotoxic  response.  Adv Healthc Mater.  2020;
               2023;19:100554.                                    9(21).
               doi: 10.1016/j.mtbio.2023.100554                   doi: 10.1002/adhm.202001163
            118. Meng  D,  Lei  X,  Li  Y,  Kong  Y,  Huang  D,  Zhang  G.  Three   130. Mazzocchi A, Devarasetty M, Huntwork R, Soker S, Skardal
               dimensional polyvinyl alcohol scaffolds modified with   A. Optimization of collagen type I-hyaluronan hybrid bioink
               collagen  for  HepG2  cell culture.  J Biomater Appl.  2020;   for 3D bioprinted liver microenvironments. Biofabrication.
               35(4-5):459-470.                                   2018;11(1):015003.
               doi: 10.1177/0885328220933505                      doi: 10.1088/1758-5090/aae543
            119. He XL, Ge LL, Liu ZL, et al. Glycyrrhetinic acid-based   131. He J, Wang J, Pang Y, et al. Bioprinting of a hepatic tissue
               thermoresponsive hydrogel as a synthetic extracellular   model using humaninduced pluripotent stem cell-derived
               matrix for hepatocyte culture and recovery. Ind Eng Chem   hepatocytes for drug-induced hepatotoxicity evaluation. Int
               Res. 2014;53(26):10618-10628.                      J Bioprint. 2022;8(3):581.
               doi: 10.1021/ie404417u                             doi: 10.18063/ijb.v8i3.581
            Volume 10 Issue 3 (2024)                       138                                doi: 10.36922/ijb.2706
     	
