Page 147 - IJB-10-3
P. 147
International Journal of Bioprinting New challenges in liver tissue engineering
132. Schmidt K, Berg J, Roehrs V, Kurreck J, Al-Zeer MA. 143. Mao S, He J, Zhao Y, et al. Bioprinting of patient-derived
3D-bioprinted HepaRG cultures as a model for testing in vitro intrahepatic cholangiocarcinoma tumor model:
long term aflatoxin B1 toxicity in vitro. Toxicol Rep. 2020;7: establishment, evaluation and anti-cancer drug testing.
1578-1587. Biofabrication. 2020;12(4).
doi: 10.1016/j.toxrep.2020.11.003 doi: 10.1088/1758-5090/aba0c3
133. Bhise NS, Manoharan V, Massa S, et al. A liver-on-a-chip 144. Kizawa H, Nagao E, Shimamura M, Zhang G, Torii H.
platform with bioprinted hepatic spheroids. Biofabrication. Scaffold-free 3D bio-printed human liver tissue stably
2016;8(1). maintains metabolic functions useful for drug discovery.
doi: 10.1088/1758-5090/8/1/014101 Biochem Biophys Rep. 2017;10:186-191.
doi: 10.1016/j.bbrep.2017.04.004
134. Janani G, Priya S, Dey S, Mandal BB. Mimicking native
liver lobule microarchitecture in vitro with parenchymal 145. Dhawan A, Mitry RR, Hughes RD, et al. Hepatocyte
and non-parenchymal cells using 3D bioprinting for drug transplantation for inherited factor VII deficiency.
toxicity and drug screening applications. ACS Appl Mater Transplantation. 2004;78(12):1812-1814.
Interfaces. 2022;14(8):10167-10186. doi: 10.1097/01.TP.0000146386.77076.47
doi: 10.1021/acsami.2c00312
146. Meyburg J, Das AM, Hoerster F, et al. One liver for four
135. Xie F, Sun L, Pang Y, et al. Three-dimensional bio-printing of children: first clinical series of liver cell transplantation
primary human hepatocellular carcinoma for personalized for severe neonatal urea cycle defects. Transplantation.
medicine. Biomaterials. 2021;265:120416. 2009;87(5):636-641.
doi: 10.1016/j.biomaterials.2020.120416 doi: 10.1097/TP.0b013e318199936a
136. Ma X, Yu C, Wang P, et al. Rapid 3D bioprinting of 147. Anderson TN, Zarrinpar A. Hepatocyte transplantation:
decellularized extracellular matrix with regionally varied past efforts, current technology, and future expansion of
mechanical properties and biomimetic microarchitecture. therapeutic potential. J Surg Res. 2018;226:48-55.
Biomaterials. 2018;185:310-321. doi: 10.1016/j.jss.2018.01.031
doi: 10.1016/j.biomaterials.2018.09.026
148. Mazza G, Rombouts K, Rennie Hall A, et al. Decellularized
137. Cuvellier M, Ezan F, Oliveira H, et al. 3D culture of HepaRG human liver as a natural 3D-scaffold for liver bioengineering
cells in GelMa and its application to bioprinting of a and transplantation. Sci Rep. 2015;5(1):13079.
multicellular hepatic model. Biomaterials. 2021;269:120611. doi: 10.1038/srep13079
doi: 10.1016/j.biomaterials.2020.120611
149. Hammond JS, Beckingham IJ, Shakesheff KM. Scaffolds
138. Kim D, Kim M, Lee J, Jang J. Review on multicomponent for liver tissue engineering. Expert Rev Med Devices.
hydrogel bioinks based on natural biomaterials for 2006;3(1):21-27.
bioprinting 3D liver tissues. Front Bioeng Biotechnol. doi: 10.1586/17434440.3.1.21
2022;10. 150. Jitraruch S, Dhawan A, Hughes RD, et al. Alginate
doi: 10.3389/fbioe.2022.764682
microencapsulated hepatocytes optimised for
139. He J, Wang J, Pang Y, et al. Bioprinting of a hepatic tissue transplantation in acute liver failure. PLoS One. 2014;9(12):1-
model using human-induced pluripotent stem cell-derived 23.
hepatocytes for drug-induced hepatotoxicity evaluation. Int doi: 10.1371/journal.pone.0113609
J Bioprint. 2022;8(3):176-190. 151. Parveen N, Khan AA, Baskar S, et al. Intraperitoneal
doi: 10.18063/ijb.v8i3.581
transplantation of hepatocytes embedded in
140. Norona LM, Nguyen DG, Gerber DA, Presnell SC, LeCluyse thermoreversible gelation polymer (Mebiol Gel) in acute
EL. Editor’s highlight: modeling compound-induced liver failure rat model. J Hepatol. 2008;48:S71.
fibrogenesis in vitro using three-dimensional bioprinted doi: 10.1016/S0168-8278(08)60166-X
human liver tissues. Toxicol Sci. 2016;154(2):354-367. 152. Chiang CH, Wu WW, Li HY, et al. Enhanced antioxidant
doi: 10.1093/toxsci/kfw169
capacity of dental pulp-derived iPSC-differentiated
141. Norona LM, Nguyen DG, Gerber DA, Presnell SC, Mosedale hepatocytes and liver regeneration by injectable HGF-
M, Watkins PB. Bioprinted liver provides early insight into releasing hydrogel in fulminant hepatic failure. Cell
the role of Kupffer cells in TGF-β1 and methotrexate- Transplant. 2015;24(3):541-559.
induced fibrogenesis. PLoS One. 2019;14(1):e0208958. doi: 10.3727/096368915X686986
doi: 10.1371/journal.pone.0208958
153. Katsuda T, Teratani T, Ochiya T, Sakai Y. Transplantation
142. Maharjan S, Bonilla D, Sindurakar P, et al. 3D human of a fetal liver cell-loaded hyaluronic acid sponge onto the
nonalcoholic hepatic steatosis and fibrosis models. Biodes mesentery recovers a Wilson’s disease model rat. J Biochem.
Manuf. 2021;4(2):157-170. 2010;148(3):281-288.
doi: 10.1007/s42242-020-00121-4 doi: 10.1093/jb/mvq063
Volume 10 Issue 3 (2024) 139 doi: 10.36922/ijb.2706

