Page 147 - IJB-10-3
P. 147

International Journal of Bioprinting                               New challenges in liver tissue engineering




            132. Schmidt K, Berg J, Roehrs V, Kurreck J, Al-Zeer MA.   143. Mao S, He J, Zhao Y, et al. Bioprinting of patient-derived
               3D-bioprinted  HepaRG  cultures  as  a  model  for  testing   in vitro intrahepatic cholangiocarcinoma tumor model:
               long term aflatoxin B1 toxicity in vitro. Toxicol Rep. 2020;7:   establishment, evaluation and anti-cancer drug testing.
               1578-1587.                                         Biofabrication. 2020;12(4).
               doi: 10.1016/j.toxrep.2020.11.003                  doi: 10.1088/1758-5090/aba0c3
            133. Bhise NS, Manoharan V, Massa S, et al. A liver-on-a-chip   144. Kizawa H, Nagao E, Shimamura M, Zhang G, Torii H.
               platform with bioprinted hepatic spheroids. Biofabrication.   Scaffold-free 3D bio-printed human liver tissue stably
               2016;8(1).                                         maintains metabolic functions useful for drug discovery.
               doi: 10.1088/1758-5090/8/1/014101                  Biochem Biophys Rep. 2017;10:186-191.
                                                                  doi: 10.1016/j.bbrep.2017.04.004
            134. Janani G, Priya S, Dey S, Mandal BB. Mimicking native
               liver lobule microarchitecture in vitro with parenchymal   145. Dhawan A, Mitry RR, Hughes RD, et al. Hepatocyte
               and non-parenchymal cells using 3D bioprinting for drug   transplantation for inherited factor VII deficiency.
               toxicity and drug screening applications. ACS Appl Mater   Transplantation. 2004;78(12):1812-1814.
               Interfaces. 2022;14(8):10167-10186.                doi: 10.1097/01.TP.0000146386.77076.47
               doi: 10.1021/acsami.2c00312
                                                               146. Meyburg  J,  Das  AM,  Hoerster  F,  et  al.  One  liver  for  four
            135. Xie F, Sun L, Pang Y, et al. Three-dimensional bio-printing of   children: first clinical series of liver cell transplantation
               primary human hepatocellular carcinoma for personalized   for severe neonatal urea cycle defects.  Transplantation.
               medicine. Biomaterials. 2021;265:120416.           2009;87(5):636-641.
               doi: 10.1016/j.biomaterials.2020.120416            doi: 10.1097/TP.0b013e318199936a
            136. Ma X, Yu C, Wang P, et al. Rapid 3D bioprinting of   147. Anderson TN, Zarrinpar A. Hepatocyte transplantation:
               decellularized extracellular matrix with regionally varied   past efforts, current technology, and future expansion of
               mechanical properties and biomimetic microarchitecture.   therapeutic potential. J Surg Res. 2018;226:48-55.
               Biomaterials. 2018;185:310-321.                    doi: 10.1016/j.jss.2018.01.031
               doi: 10.1016/j.biomaterials.2018.09.026
                                                               148. Mazza G, Rombouts K, Rennie Hall A, et al. Decellularized
            137. Cuvellier M, Ezan F, Oliveira H, et al. 3D culture of HepaRG   human liver as a natural 3D-scaffold for liver bioengineering
               cells in GelMa and its application to bioprinting of a   and transplantation. Sci Rep. 2015;5(1):13079.
               multicellular hepatic model. Biomaterials. 2021;269:120611.     doi: 10.1038/srep13079
               doi: 10.1016/j.biomaterials.2020.120611
                                                               149. Hammond JS, Beckingham IJ, Shakesheff KM. Scaffolds
            138. Kim D, Kim M, Lee J, Jang J. Review on multicomponent   for liver tissue engineering.  Expert Rev Med Devices.
               hydrogel bioinks based on natural biomaterials for   2006;3(1):21-27.
               bioprinting 3D liver tissues.  Front Bioeng Biotechnol.      doi: 10.1586/17434440.3.1.21
               2022;10.                                        150. Jitraruch  S, Dhawan  A,  Hughes  RD,  et  al.  Alginate
               doi: 10.3389/fbioe.2022.764682
                                                                  microencapsulated  hepatocytes  optimised  for
            139. He J, Wang J, Pang Y, et al. Bioprinting of a hepatic tissue   transplantation in acute liver failure. PLoS One. 2014;9(12):1-
               model using human-induced pluripotent stem cell-derived   23.
               hepatocytes for drug-induced hepatotoxicity evaluation. Int      doi: 10.1371/journal.pone.0113609
               J Bioprint. 2022;8(3):176-190.                  151. Parveen N, Khan AA, Baskar S, et al. Intraperitoneal
               doi: 10.18063/ijb.v8i3.581
                                                                  transplantation  of  hepatocytes  embedded  in
            140. Norona LM, Nguyen DG, Gerber DA, Presnell SC, LeCluyse   thermoreversible  gelation polymer  (Mebiol  Gel)  in  acute
               EL.  Editor’s  highlight: modeling  compound-induced   liver failure rat model. J Hepatol. 2008;48:S71.
               fibrogenesis  in vitro using three-dimensional bioprinted      doi: 10.1016/S0168-8278(08)60166-X
               human liver tissues. Toxicol Sci. 2016;154(2):354-367.  152. Chiang CH, Wu WW, Li HY, et al. Enhanced antioxidant
               doi: 10.1093/toxsci/kfw169
                                                                  capacity of dental pulp-derived iPSC-differentiated
            141. Norona LM, Nguyen DG, Gerber DA, Presnell SC, Mosedale   hepatocytes and liver regeneration by injectable HGF-
               M, Watkins PB. Bioprinted liver provides early insight into   releasing hydrogel in fulminant hepatic failure.  Cell
               the role of Kupffer cells in TGF-β1 and methotrexate-  Transplant. 2015;24(3):541-559.
               induced fibrogenesis. PLoS One. 2019;14(1):e0208958.     doi: 10.3727/096368915X686986
               doi: 10.1371/journal.pone.0208958
                                                               153. Katsuda T, Teratani T, Ochiya T, Sakai Y. Transplantation
            142. Maharjan S, Bonilla D, Sindurakar P, et al. 3D human   of a fetal liver cell-loaded hyaluronic acid sponge onto the
               nonalcoholic hepatic steatosis and fibrosis models.  Biodes   mesentery recovers a Wilson’s disease model rat. J Biochem.
               Manuf. 2021;4(2):157-170.                          2010;148(3):281-288.
               doi: 10.1007/s42242-020-00121-4                    doi: 10.1093/jb/mvq063



            Volume 10 Issue 3 (2024)                       139                                doi: 10.36922/ijb.2706
   142   143   144   145   146   147   148   149   150   151   152