Page 145 - IJB-10-3
P. 145
International Journal of Bioprinting New challenges in liver tissue engineering
regenerative medicine. Adv Mater. 2014;26(1):85-124. 97. Lee JW, Choi YJ, Yong WJ, et al. Development of a 3D cell
doi: 10.1002/adma.201303233 printed construct considering angiogenesis for liver tissue
engineering. Biofabrication. 2016;8(1):015007.
86. Jiang J, Tan Y, Liu A, et al. Tissue engineered artificial liver
model based on viscoelastic hyaluronan-collagen hydrogel doi: 10.1088/1758-5090/8/1/015007
and the effect of EGCG intervention on ALD. Colloids Surf 98. Cui J, Wang H, Shi Q, Sun T, Huang Q, Fukuda T. Multicellular
B Biointerfaces. 2021;206. co-culture in three-dimensional gelatin methacryloyl
doi: 10.1016/j.colsurfb.2021.111980 hydrogels for liver tissue engineering. Molecules. 2019;24(9).
doi: 10.3390/molecules24091762
87. Tong X, Zhao F, Ren Y, Zhang Y, Cui Y, Wang Q. Injectable
hydrogels based on glycyrrhizin, alginate, and calcium for 99. An S, Choi S, Min S, Cho SW. Hyaluronic acid-based
three‐dimensional cell culture in liver tissue engineering. biomimetic hydrogels for tissue engineering and medical
J Biomed Mater Res A. 2018;106(12):3292-3302. applications. Biotechnol Bioprocess Eng. 2021;26(4):503-516.
doi: 10.1002/jbm.a.36528 doi: 10.1007/s12257-020-0343-8
88. Lai JY. Biocompatibility of chemically cross-linked gelatin 100. Christoffersson J, Aronsson C, Jury M, Selegård R, Aili
hydrogels for ophthalmic use. J Mater Sci Mater Med. D, Mandenius CF. Fabrication of modular hyaluronan-
2010;21(6):1899-1911. PEG hydrogels to support 3D cultures of hepatocytes in a
doi: 10.1007/s10856-010-4035-3 perfused liver-on-a-chip device. Biofabrication. 2019;11(1).
doi: 10.1088/1758-5090/aaf657
89. Tan H, Marra KG. Injectable, biodegradable hydrogels
for tissue engineering applications. Materials. 2010;3(3): 101. Kim M, Lee JY, Jones CN, Revzin A, Tae G. Heparin-based
1746-1767. hydrogel as a matrix for encapsulation and cultivation
doi: 10.3390/ma3031746 of primary hepatocytes. Biomaterials. 2010;31(13):3596-3603.
doi: 10.1016/j.biomaterials.2010.01.068
90. Rodriguez-Fernandez J, Garcia-Legler E, Villanueva-
Badenas E, et al. Primary human hepatocytes-laden 102. Chen S, Liu A, Wu C, et al. Static–dynamic profited viscoelastic
scaffolds for the treatment of acute liver failure. Biomater hydrogels for motor-clutch-regulated neurogenesis. ACS
Adv. 2023;153:213576. Appl Mater Interfaces. 2021;13(21):24463-24476.
doi: 10.1016/j.bioadv.2023.213576 doi: 10.1021/acsami.1c03821
91. Ramiah P, du Toit LC, Choonara YE, Kondiah PPD, Pillay 103. Malinen MM, Kanninen LK, Corlu A, et al. Differentiation
V. Hydrogel-based bioinks for 3D bioprinting in tissue of liver progenitor cell line to functional organotypic
regeneration. Front Mater. 2020;7. cultures in 3D nanofibrillar cellulose and hyaluronan-
doi: 10.3389/fmats.2020.00076 gelatin hydrogels. Biomaterials. 2014;35(19):5110-5121.
doi: 10.1016/j.biomaterials.2014.03.020
92. Raghuwanshi VS, Garnier G. Characterisation of hydrogels:
linking the nano to the microscale. Adv Colloid Interface Sci. 104. Stevens KR, Miller JS, Blakely BL, Chen CS, Bhatia SN.
2019;274:102044. Degradable hydrogels derived from PEG‐diacrylamide
doi: 10.1016/j.cis.2019.102044 for hepatic tissue engineering. J Biomed Mater Res A.
2015;103(10):3331-3338.
93. Richbourg NR, Peppas NA. The swollen polymer
network hypothesis: quantitative models of hydrogel doi: 10.1002/jbm.a.35478
swelling, stiffness, and solute transport. Prog Polym Sci. 105. Underhill GH, Chen AA, Albrecht DR, Bhatia SN.
2020;105:101243. Assessment of hepatocellular function within PEG
doi: 10.1016/j.progpolymsci.2020.101243 hydrogels. Biomaterials. 2007;28(2):256-270.
doi: 10.1016/j.biomaterials.2006.08.043
94. Willemse J, van Tienderen G, van Hengel E, et al. Hydrogels
derived from decellularized liver tissue support the growth 106. Lin TY, Ki CS, Lin CC. Manipulating hepatocellular
and differentiation of cholangiocyte organoids. Biomaterials. carcinoma cell fate in orthogonally cross-linked hydrogels.
2022;284:121473. Biomaterials. 2014;35(25):6898-6906.
doi: 10.1016/j.biomaterials.2022.121473 doi: 10.1016/j.biomaterials.2014.04.118
95. Ye S, Boeter JWB, Penning LC, Spee B, Schneeberger K. 107. Kim D, Kim M, Lee J, Jang J. Review on multicomponent
Hydrogels for liver tissue engineering. Bioengineering. hydrogel bioinks based on natural biomaterials for
2019;6(3):59. bioprinting 3D liver tissues. Front Bioeng Biotechnol.
doi: 10.3390/bioengineering6030059 2022;10.
doi: 10.3389/fbioe.2022.764682
96. Desimone MF, Hélary C, Rietveld IB, et al. Silica-collagen
bionanocomposites as three-dimensional scaffolds for 108. Kim MK, Jeong W, Kang HW. Liver dECM–gelatin composite
fibroblast immobilization. Acta Biomater. 2010;6(10): bioink for precise 3D printing of highly functional liver
3998-4004. tissues. J Funct Biomater. 2023;14(8).
doi: 10.1016/j.actbio.2010.05.014 doi: 10.3390/jfb14080417
Volume 10 Issue 3 (2024) 137 doi: 10.36922/ijb.2706

