Page 145 - IJB-10-3
P. 145

International Journal of Bioprinting                               New challenges in liver tissue engineering




               regenerative medicine. Adv Mater. 2014;26(1):85-124.  97.  Lee JW, Choi YJ, Yong WJ, et al. Development of a 3D cell
               doi: 10.1002/adma.201303233                        printed construct considering angiogenesis for liver tissue
                                                                  engineering. Biofabrication. 2016;8(1):015007.
            86.  Jiang J, Tan Y, Liu A, et al. Tissue engineered artificial liver
               model based on viscoelastic hyaluronan-collagen hydrogel      doi: 10.1088/1758-5090/8/1/015007
               and the effect of EGCG intervention on ALD. Colloids Surf   98.  Cui J, Wang H, Shi Q, Sun T, Huang Q, Fukuda T. Multicellular
               B Biointerfaces. 2021;206.                         co-culture in three-dimensional gelatin methacryloyl
               doi: 10.1016/j.colsurfb.2021.111980                hydrogels for liver tissue engineering. Molecules. 2019;24(9).
                                                                  doi: 10.3390/molecules24091762
            87.  Tong X, Zhao F, Ren Y, Zhang Y, Cui Y, Wang Q. Injectable
               hydrogels based on glycyrrhizin, alginate, and calcium for   99.  An S,  Choi S,  Min S, Cho SW. Hyaluronic acid-based
               three‐dimensional cell culture in liver tissue engineering.    biomimetic hydrogels for tissue engineering and medical
               J Biomed Mater Res A. 2018;106(12):3292-3302.      applications. Biotechnol Bioprocess Eng. 2021;26(4):503-516.
               doi: 10.1002/jbm.a.36528                           doi: 10.1007/s12257-020-0343-8
            88.  Lai JY. Biocompatibility of chemically cross-linked gelatin   100. Christoffersson J, Aronsson C, Jury M, Selegård R, Aili
               hydrogels for ophthalmic use.  J Mater Sci Mater Med.   D, Mandenius CF. Fabrication of modular hyaluronan-
               2010;21(6):1899-1911.                              PEG hydrogels to support 3D cultures of hepatocytes in a
               doi: 10.1007/s10856-010-4035-3                     perfused liver-on-a-chip device. Biofabrication. 2019;11(1).
                                                                  doi: 10.1088/1758-5090/aaf657
            89.  Tan H, Marra KG. Injectable, biodegradable hydrogels
               for tissue engineering applications.  Materials. 2010;3(3):   101. Kim M, Lee JY, Jones CN, Revzin A, Tae G. Heparin-based
               1746-1767.                                         hydrogel as a matrix for encapsulation and cultivation
               doi: 10.3390/ma3031746                             of primary hepatocytes. Biomaterials. 2010;31(13):3596-3603.
                                                                  doi: 10.1016/j.biomaterials.2010.01.068
            90.  Rodriguez-Fernandez J, Garcia-Legler E, Villanueva-
               Badenas  E,  et  al.  Primary human  hepatocytes-laden   102. Chen S, Liu A, Wu C, et al. Static–dynamic profited viscoelastic
               scaffolds for the treatment of acute liver failure. Biomater   hydrogels  for  motor-clutch-regulated  neurogenesis.  ACS
               Adv. 2023;153:213576.                              Appl Mater Interfaces. 2021;13(21):24463-24476.
               doi: 10.1016/j.bioadv.2023.213576                  doi: 10.1021/acsami.1c03821
            91.  Ramiah P, du Toit LC, Choonara YE, Kondiah PPD, Pillay   103. Malinen MM, Kanninen LK, Corlu A, et al. Differentiation
               V. Hydrogel-based bioinks for 3D bioprinting in tissue   of liver progenitor cell line to functional organotypic
               regeneration. Front Mater. 2020;7.                 cultures in 3D nanofibrillar cellulose and hyaluronan-
               doi: 10.3389/fmats.2020.00076                      gelatin hydrogels. Biomaterials. 2014;35(19):5110-5121.
                                                                  doi: 10.1016/j.biomaterials.2014.03.020
            92.  Raghuwanshi VS, Garnier G. Characterisation of hydrogels:
               linking the nano to the microscale. Adv Colloid Interface Sci.   104. Stevens KR, Miller JS, Blakely BL, Chen CS, Bhatia SN.
               2019;274:102044.                                   Degradable hydrogels derived from PEG‐diacrylamide
               doi: 10.1016/j.cis.2019.102044                     for hepatic tissue engineering.  J Biomed Mater Res A.
                                                                  2015;103(10):3331-3338.
            93.  Richbourg NR, Peppas NA. The swollen polymer
               network hypothesis: quantitative models of hydrogel      doi: 10.1002/jbm.a.35478
               swelling, stiffness, and solute transport.  Prog Polym Sci.   105. Underhill GH, Chen AA, Albrecht DR, Bhatia SN.
               2020;105:101243.                                   Assessment of hepatocellular function within PEG
               doi: 10.1016/j.progpolymsci.2020.101243            hydrogels. Biomaterials. 2007;28(2):256-270.
                                                                  doi: 10.1016/j.biomaterials.2006.08.043
            94.  Willemse J, van Tienderen G, van Hengel E, et al. Hydrogels
               derived from decellularized liver tissue support the growth   106. Lin TY,  Ki CS, Lin CC. Manipulating hepatocellular
               and differentiation of cholangiocyte organoids. Biomaterials.   carcinoma cell fate in orthogonally cross-linked hydrogels.
               2022;284:121473.                                   Biomaterials. 2014;35(25):6898-6906.
               doi: 10.1016/j.biomaterials.2022.121473            doi: 10.1016/j.biomaterials.2014.04.118
            95.  Ye S, Boeter JWB, Penning LC, Spee B, Schneeberger K.   107. Kim D, Kim M, Lee J, Jang J. Review on multicomponent
               Hydrogels for liver tissue engineering.  Bioengineering.   hydrogel bioinks based on natural biomaterials for
               2019;6(3):59.                                      bioprinting 3D liver tissues.  Front Bioeng Biotechnol.
               doi: 10.3390/bioengineering6030059                 2022;10.
                                                                  doi: 10.3389/fbioe.2022.764682
            96.  Desimone MF, Hélary C, Rietveld IB, et al. Silica-collagen
               bionanocomposites as three-dimensional scaffolds for   108. Kim MK, Jeong W, Kang HW. Liver dECM–gelatin composite
               fibroblast immobilization.  Acta Biomater. 2010;6(10):   bioink for precise 3D printing of highly functional liver
               3998-4004.                                         tissues. J Funct Biomater. 2023;14(8).
               doi: 10.1016/j.actbio.2010.05.014                  doi: 10.3390/jfb14080417


            Volume 10 Issue 3 (2024)                       137                                doi: 10.36922/ijb.2706
   140   141   142   143   144   145   146   147   148   149   150