Page 495 - IJB-10-3
P. 495
International Journal of Bioprinting Stretchable scaffold for modeling fibrosis
8. Castilho M, Feyen D, Flandes-Iparraguirre M, et al. Melt 19. Huang G, Wang L, Wang S, et al. Engineering three-
electrospinning writing of poly-hydroxymethylglycolide- dimensional cell mechanical microenvironment with
co-ε-Caprolactone-based scaffolds for cardiac tissue hydrogels. Biofabrication. 2012;4(4):042001.
engineering. Adv Healthc Mater. 2017;6(18):1-9. doi: 10.1088/1758-5082/4/4/042001
doi: 10.1002/adhm.201700311
20. Park N, Kim J. Hydrogel‐based artificial muscles: overview
9. Paxton NC, Daley R, Forrestal DP, Allenby MC, Woodruff and recent progress. Adv Intell Syst. 2020;2(4):1900135.
MA. Auxetic tubular scaffolds via melt electrowriting. Mater doi: 10.1002/aisy.201900135
Des. 2020;193:108787. 21. Boffito M, Di Meglio F, Mozetic P, et al. Surface
doi: 10.1016/j.matdes.2020.108787. functionalization of polyurethane scaffolds mimicking the
10. Bas O, D’Angella D, Baldwin JG, et al. An integrated myocardial microenvironment to support cardiac primitive
design, material, and fabrication platform for engineering cells. PLoS One. 2018;13(7):e0199896.
biomechanically and biologically functional soft tissues. doi: 10.1371/journal.pone.0199896
ACS Appl Mater Interfaces. 2017;9(35):29430-29437. 22. Chiono V, Ciardelli G, Vozzi G, et al. Enzymatically-
doi: 10.1021/acsami.7b08617 modified melt-extruded guides for peripheral nerve repair.
11. Saidy NT, Wolf F, Bas O, et al. Biologically inspired scaffolds Eng Life Sci. 2008; 8(3):226-237.
for heart valve tissue engineering via melt electrowriting. doi: 10.1002/elsc.200700069
Small. 2019;15(24):e1900873. 23. Chiono V, Vozzi G, Acunto MD, et al. Characterisation of
doi: 10.1002/smll.201900873 blends between poly (ε-caprolactone) and polysaccharides
12. Robinson TM, Hutmacher DW, Dalton PD. The next for tissue engineering applications. Mater Sci Eng C.
frontier in melt electrospinning: taming the jet. Adv Funct 2009;29(7):2174-2187.
Mater. 2019;29(44):1904664. doi: 10.1016/j.msec.2009.04.020
doi: 10.1002/adfm.201904664 24. Spedicati M, Ruocco G, Zoso A, et al. Biomimetic design
13. Hochleitner G, Jüngst T, Brown TD, et al. Additive of bioartificial scaffolds for the in vitro modelling of human
manufacturing of scaffolds with sub-micron filaments cardiac fibrosis. Front Bioeng Biotechnol. 2022;10:983872.
via melt electrospinning writing. Biofabrication. doi: 10.3389/fbioe.2022.983872.
2015;7(3):035002. 25. Bari E, Scocozza F, Perteghella S, et al. 3D bioprinted scaffolds
doi: 10.1088/1758-5090/7/3/035002 containing mesenchymal stem/stromal lyosecretome: next
14. Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan generation controlled release device for bone regenerative
KC. Mechanical properties and cell cultural response of medicine. Pharmaceutics. 2021;13(4):515.
polycaprolactone scaffolds designed and fabricated via fused doi: 10.3390/pharmaceutics13040515
deposition modeling. J Biomed Mater Res. 2001;55(2):203-216. 26. Chen QZ, Harding SE, Ali NN, Lyon AR, Boccaccini
doi: 10.1002/1097-4636(200105)55:2<203::aid- AR. Biomaterials in cardiac tissue engineering: ten years
jbm1007>3.0.CO;2-7 of research survey. Mater Sci Eng R Rep. 2008;59(1–6):
15. Agarwala MK, Jamalabad VR, Langrana NA, Safari A, 1-37.
Whalen PJ, Danforth SC. Structural quality of parts processed doi: 10.1016/j.mser.2007.08.001
by fused deposition. Rapid Prototyp J. 1996:2(4):4-19. 27. Guimarães CF, Gasperini L, Marques AP, Reis RL. The
doi: 10.1108/13552549610732034 stiffness of living tissues and its implications for tissue
16. Meng Z, He J, Li J, Su Y, Li D. Melt-based, solvent-free additive engineering. Nat Rev Mater. 2020;5:351-370.
manufacturing of biodegradable polymeric scaffolds with doi: 10.1038/s41578-019-0169-1
designer microstructures for tailored mechanical/biological 28. Chelnokova NO, Golyadkina AA, Kirillova IV, Polienko AV,
properties and clinical applications. Virtual Phys Prototyp. Ivanov DV. Morphology and biomechanics of human heart.
2020;15(4):417-444. Proc SPIE. 2016;9710:971013.
doi: 10.1080/17452759.2020.1808937 doi: 10.1117/12.2208423
17. Emig R, Zgierski-Johnston CM, Timmermann V, et al. 29. Visone R, Paoletti A, Cordiale L, et al. In vitro mechanical
Passive myocardial mechanical properties: meaning, stimulation to reproduce the pathological Hallmarks of
measurement, models. Biophys Rev. 2021;13(5):587-610. human cardiac fibrosis on a beating chip and predict the
doi: 10.1007/s12551-021-00838-1 efficacy of drugs and advanced therapies. Adv Healthc Mater.
2024;13(4):e2301481.
18. Zhang W, Huang G, Xu F. Engineering biomaterials and
approaches for mechanical stretching of cells in three doi: 10.1002/adhm.202301481
dimensions. Front Bioeng Biotechnol. 2020;8:589590. 30. Paoletti C, Divieto C, Tarricone G, Di Meglio F, Nurzynska
doi: 10.3389/fbioe.2020.589590 D, Chiono V. MicroRNA-mediated direct reprogramming
Volume 10 Issue 3 (2024) 487 doi: 10.36922/ijb.2247

