Page 495 - IJB-10-3
P. 495

International Journal of Bioprinting                                Stretchable scaffold for modeling fibrosis




            8.   Castilho M, Feyen D, Flandes-Iparraguirre M, et al. Melt   19.  Huang G, Wang L, Wang S, et al. Engineering three-
               electrospinning writing of poly-hydroxymethylglycolide-  dimensional cell mechanical microenvironment with
               co-ε-Caprolactone-based scaffolds for cardiac tissue   hydrogels. Biofabrication. 2012;4(4):042001.
               engineering. Adv Healthc Mater. 2017;6(18):1-9.     doi: 10.1088/1758-5082/4/4/042001
               doi: 10.1002/adhm.201700311
                                                               20.  Park N, Kim J. Hydrogel‐based artificial muscles: overview
            9.   Paxton NC, Daley R, Forrestal DP, Allenby MC, Woodruff   and recent progress. Adv Intell Syst. 2020;2(4):1900135.
               MA. Auxetic tubular scaffolds via melt electrowriting. Mater      doi: 10.1002/aisy.201900135
               Des. 2020;193:108787.                           21.  Boffito M, Di Meglio F, Mozetic P, et al. Surface
               doi: 10.1016/j.matdes.2020.108787.                 functionalization of polyurethane scaffolds mimicking the
            10.  Bas O, D’Angella D, Baldwin JG, et al. An integrated   myocardial microenvironment to support cardiac primitive
               design, material, and fabrication platform for engineering   cells. PLoS One. 2018;13(7):e0199896.
               biomechanically and biologically functional soft tissues.      doi: 10.1371/journal.pone.0199896
               ACS Appl Mater Interfaces. 2017;9(35):29430-29437.   22.  Chiono V, Ciardelli G, Vozzi G, et al. Enzymatically-
               doi: 10.1021/acsami.7b08617                        modified melt-extruded guides for peripheral nerve repair.
            11.  Saidy NT, Wolf F, Bas O, et al. Biologically inspired scaffolds   Eng Life Sci. 2008; 8(3):226-237.
               for heart valve tissue engineering via melt electrowriting.      doi: 10.1002/elsc.200700069
               Small. 2019;15(24):e1900873.                    23.  Chiono V, Vozzi G, Acunto MD, et al. Characterisation of
               doi: 10.1002/smll.201900873                        blends between poly (ε-caprolactone) and polysaccharides
            12.  Robinson  TM,  Hutmacher  DW,  Dalton  PD.  The  next   for tissue engineering applications.  Mater Sci Eng C.
               frontier in melt electrospinning: taming the jet. Adv Funct   2009;29(7):2174-2187.
               Mater. 2019;29(44):1904664.                        doi: 10.1016/j.msec.2009.04.020
               doi: 10.1002/adfm.201904664                     24.  Spedicati M, Ruocco G, Zoso A, et al. Biomimetic design
            13.  Hochleitner G, Jüngst T, Brown TD, et al. Additive   of bioartificial scaffolds for the in vitro modelling of human
               manufacturing of scaffolds with sub-micron filaments   cardiac fibrosis. Front Bioeng Biotechnol. 2022;10:983872.
               via  melt  electrospinning  writing.  Biofabrication.      doi: 10.3389/fbioe.2022.983872.
               2015;7(3):035002.                               25.  Bari E, Scocozza F, Perteghella S, et al. 3D bioprinted scaffolds
               doi: 10.1088/1758-5090/7/3/035002                  containing  mesenchymal  stem/stromal  lyosecretome: next
            14.  Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan   generation controlled release device for bone regenerative
               KC. Mechanical properties and cell cultural response of   medicine. Pharmaceutics. 2021;13(4):515.
               polycaprolactone scaffolds designed and fabricated via fused      doi: 10.3390/pharmaceutics13040515
               deposition modeling. J Biomed Mater Res. 2001;55(2):203-216.   26.  Chen QZ, Harding SE, Ali NN, Lyon AR, Boccaccini
               doi: 10.1002/1097-4636(200105)55:2<203::aid-       AR. Biomaterials in cardiac tissue engineering: ten years
               jbm1007>3.0.CO;2-7                                 of research survey.  Mater Sci Eng R Rep. 2008;59(1–6):
            15.  Agarwala MK, Jamalabad VR, Langrana NA, Safari A,   1-37.
               Whalen PJ, Danforth SC. Structural quality of parts processed      doi: 10.1016/j.mser.2007.08.001
               by fused deposition. Rapid Prototyp J. 1996:2(4):4-19.   27.  Guimarães CF, Gasperini L, Marques AP, Reis RL. The
               doi: 10.1108/13552549610732034                     stiffness of  living tissues  and  its implications  for  tissue
            16.  Meng Z, He J, Li J, Su Y, Li D. Melt-based, solvent-free additive   engineering. Nat Rev Mater. 2020;5:351-370.
               manufacturing of biodegradable polymeric scaffolds with      doi: 10.1038/s41578-019-0169-1
               designer microstructures for tailored mechanical/biological   28.  Chelnokova NO, Golyadkina AA, Kirillova IV, Polienko AV,
               properties and clinical applications. Virtual Phys Prototyp.   Ivanov DV. Morphology and biomechanics of human heart.
               2020;15(4):417-444.                                Proc SPIE. 2016;9710:971013.
               doi: 10.1080/17452759.2020.1808937                 doi: 10.1117/12.2208423
            17.  Emig R, Zgierski-Johnston CM, Timmermann V, et al.   29.  Visone R, Paoletti A, Cordiale L, et al. In vitro mechanical
               Passive  myocardial  mechanical properties:  meaning,   stimulation to reproduce the pathological Hallmarks of
               measurement, models. Biophys Rev. 2021;13(5):587-610.   human cardiac fibrosis on a beating chip and predict the
               doi: 10.1007/s12551-021-00838-1                    efficacy of drugs and advanced therapies. Adv Healthc Mater.
                                                                  2024;13(4):e2301481.
            18.  Zhang W, Huang G, Xu F. Engineering biomaterials and
               approaches for mechanical stretching of cells in three      doi: 10.1002/adhm.202301481
               dimensions. Front Bioeng Biotechnol. 2020;8:589590.   30.  Paoletti C, Divieto C, Tarricone G, Di Meglio F, Nurzynska
               doi: 10.3389/fbioe.2020.589590                     D, Chiono V. MicroRNA-mediated direct reprogramming




            Volume 10 Issue 3 (2024)                       487                                doi: 10.36922/ijb.2247
   490   491   492   493   494   495   496   497   498   499   500