Page 496 - IJB-10-3
P. 496

International Journal of Bioprinting                                Stretchable scaffold for modeling fibrosis




               of human adult fibroblasts toward cardiac Phenotype. Front      doi: 10.1016/j.jcis.2019.12.048
               Bioeng Biotechnol. 2020;8:529.                  40.  Chen YW, Wang K, Ho CC, Kao CT, Ng HY, Shie MY.
               doi: 10.3389/fbioe.2020.00529
                                                                  Cyclic tensile stimulation enrichment of Schwann cell-laden
            31.  Nicoletti L, Paoletti C, Tarricone G, et al. Lipoplexes for   auxetic hydrogel scaffolds towards peripheral nerve tissue
               effective in vitro delivery of microRNAs to adult human   engineering. Mater Des. 2020;195:108982.
               cardiac fibroblasts for perspective direct cardiac cell      doi: 10.1016/j.matdes.2020.108982
               reprogramming. Nanomedicine. 2022;45:102589.    41.  Donderwinkel I, Van Hest JCM, Cameron NR. Bio-inks for
               doi: 10.1016/j.nano.2022.102589
                                                                  3D bioprinting: recent advances and future prospects. Polym
            32.  Schipani R, Nolan DR, Lally C, Kelly DJ. Integrating finite   Chem. 2017;8:4451-71.
               element modelling and 3D printing to engineer biomimetic      doi: 10.1039/c7py00826k
               polymeric scaffolds for tissue engineering.  Connect Tissue   42.  Ward M, Iskratsch T. Mix and (mis-)match – the
               Res. 2020;61(2):174-189.                           mechanosensing machinery in the changing environment
               doi: 10.1080/03008207.2019.1656720
                                                                  of the developing, healthy adult and diseased heart. Biochim
            33.  Carmagnola I, Chiono V, Ruocco G, et al. Plga membranes   Biophys Acta Mol Cell Res. 2020;1867(3):118436.
               functionalized  with  gelatin  through  biomimetic  mussel-     doi: 10.1016/j.bbamcr.2019.01.017
               inspired strategy. Nanomaterials. 2020;10(11):1-17.   43.  Sirry MS, Butler JR, Patnaik SS, et al. Characterisation of
               doi: 10.3390/nano10112184
                                                                  the mechanical properties of infarcted myocardium in the
            34.  Melilli G, Carmagnola I, Tonda-Turo C, et al. DLP 3D   rat under biaxial tension and uniaxial compression. J Mech
               printing meets lignocellulosic biopolymers: carboxymethyl   Behav Biomed Mater. 2016;63:252-264.
               cellulose inks for 3D biocompatible hydrogels.  Polymers      doi: 10.1016/j.jmbbm.2016.06.029
               (Basel). 2020;12(8):1-11.                       44.  Arani A, Arunachalam SP, Chang ICY, et al. Cardiac
               doi: 10.3390/POLYM12081655
                                                                  MR elastography for quantitative assessment of elevated
            35.  Ding H, Illsley NP, Chang RC. 3D Bioprinted GelMA based   myocardial stiffness in cardiac amyloidosis. J Magn Reson
               models for the study of Trophoblast cell invasion. Sci Rep.   Imaging. 2017;46(5):1361-1367.
               2019;9(1):18854.                                   doi: 10.1002/JMRI.25678
               doi: 10.1038/s41598-019-55052-7
                                                               45.  Vedadghavami A, Minooei F, Mohammadi MH, et al.
            36.  Fedorovich NE, Oudshoorn MH, van Geemen D, Hennink   Manufacturing of hydrogel biomaterials with controlled
               WE, Alblas J, Dhert WJ. The effect of photopolymerization   mechanical  properties  for  tissue  engineering  applications.
               on stem cells embedded in hydrogels.  Biomaterials.   Acta Biomater. 2017;62:42-63.
               2009;30(3):344-353.                                doi: 10.1016/j.actbio.2017.07.028
               doi: 10.1016/j.biomaterials.2008.09.037
                                                               46.  Chaudhuri O, Cooper-White J, Janmey PA, Mooney DJ,
            37.  Sadeghi AH, Shin SR, Deddens JC, et al. Engineered 3D   Shenoy VB. Effects of extracellular matrix viscoelasticity
               cardiac fibrotic tissue to study fibrotic remodeling.  Adv   on  cellular  behaviour.  Nature.  2020;584(7822):
               Healthc Mater. 2017;6(11):1-14.                    535-546.
               doi: 10.1002/adhm.201601434                        doi: 10.1038/s41586-020-2612-2O
            38.  McCain ML, Lee H, Aratyn-Schaus Y, Kléber AG, Parker   47.  Choi JR, Yong KW, Choi JY, Cowie AC. Recent advances in
               KK. Cooperative coupling of cell-matrix and cell-cell   photo-crosslinkable hydrogels for biomedical applications.
               adhesions in cardiac muscle.  Proc Natl Acad Sci  U S A.   Biotechniques. 2019;66(1):40-53.
               2012;109(25):9881-9886.                            doi: 10.2144/btn-2018-0083
               doi: 10.1073/pnas.1203007109
                                                               48.  Ruocco  G, Zoso  A, Mortati L, Carmagnola I,  Chiono  V.
            39.  Rajabi N, Kharaziha M, Emadi R, Zarrabi A, Mokhtari H,   Biomimetic electrospun scaffold-based in vitro model
               Salehi S. An adhesive and injectable nanocomposite hydrogel of   resembling  the  Hallmarks  of  human  myocardial  fibrotic
               thiolated gelatin/gelatin methacrylate/Laponite® as a potential   tissue. ACS Biomater Sci Eng. 2023;9(7):4368-4380.
               surgical sealant. J Colloid Interface Sci. 2020;564:155-169.     doi: 10.1021/acsbiomaterials.3c00483















            Volume 10 Issue 3 (2024)                       488                                doi: 10.36922/ijb.2247
   491   492   493   494   495   496   497   498   499   500   501