Page 15 - IJB-4-1
P. 15

3D printing for drug manufacturing: A perspective on the future of pharmaceuticals

               j.jconrel.2011.07.033                              689–699. http://doi.org/10.1016/j.tibtech.2016.04.006
           26.  Alhnan M A, Okwuosa T C, Sadia M,  et al., 2016,   38.  Lee W, Debasitis J C, Lee V K, et al., 2009, Multi-layered
               Emergence of 3D printed dosage forms: Opportunities   culture of human skin fibroblasts and keratinocytes through
               and challenges. Pharm Res, 33(8): 1817–1832. http://doi.  three-dimensional freeform fabrication. Biomaterials,
               org/10.1007/s11095-016-1933-1                      30(8): 1587–1595. http://doi.org/10.1016/j.biomaterials.
           27.  Mazzoli A, 2013, Selective laser sintering in biomedical   2008.12.009
               engineering. Med Biol Eng Comput, 51(3): 245–256. http://  39.  Panwar A and Tan L P, 2016, Current status of bioinks for
               doi.org/10.1007/s11517-012-1001-x                  micro-extrusion-based 3D bioprinting. Molecules, 21(6):
           28.  Tan K H, Chua C K, Leong K F, et al., 2003, Scaf-  685. http://doi.org/10.3390/molecules21060685
               fold  development  using selective laser  sintering of   40.  Vaezi M and Chua C K, 2011, Effects of layer thickness and
               polyetheretherketone-hydroxyapatite biocomposite blends.   binder saturation level parameters on 3D printing process.
               Biomaterials, 24(18): 3115–3123. http://doi.org/10.1016/  Int J Adv Manuf Technol, 53(1–4): 275–284. http://doi.
               S0142-9612(03)00131-5                              org/10.1007/s00170-010-2821-1
           29.  Pardeike J, Strohmeier D M, Schrödl N, et al., 2011,   41.  Lam C X F, Mo X M, Teoh S H, et al., 2002, Scaffold
               Nanosuspensions as advanced printing ink for accurate   development using 3D printing with a starch-based polymer.
               dosing of poorly soluble drugs in personalized medicines.   Mater Sci Eng C, 20(1–2): 49–56. http://doi.org/10.1016/
               Int J Pharm, 420(1): 93–100. http://doi.org/10.1016/  S0928-4931(02)00012-7
               j.ijpharm.2011.08.033                           42.  Giordano R A, Wu B M, Borland S W, et al., 1997,
           30.  Goole J and Amighi K, 2016, 3D printing in pharmaceutics:   Mechanical properties of dense polylactic acid structures
               A new tool for designing customized drug delivery systems.   fabricated by three dimensional printing. J Biomater
               Int J Pharm, 499(1–2): 376–394. http://doi.org/10.1016/  Sci Polym Ed, 8(1): 63–75. http://doi.org/10.1163/
               j.ijpharm.2015.12.071                              156856297X00588
           31.  Sokolsky-Papkov M, Agashi K, Olaye A, et al., 2014,   43.  Antonov E N, Bagratashvili V N, Whitaker M J, et al., 2005,
               Polymer carriers for drug delivery in tissue engineering. Adv   Three-dimensional bioactive and biodegradable scaffolds
               Drug Deliv Rev, 59(4–5): 187–206. http://doi.org/10.1016/  fabricated by surface-selective laser sintering. Adv Mater,
               j.addr.2007.04.001                                 17(3): 327–330. http://doi.org/10.1002/adma.200400838
           32.  Vehse M, Petersen S, Sternberg K, et al., 2014, Drug delivery   44.  Rimell J T and Marquis P M, 2000, Selective laser sintering
               from poly(ethylene glycol) diacrylate scaffolds produced   of ultra high molecular weight polyethylene for clinical
               by DLC based micro-stereolithography. Macromol Symp,   applications. J Biomed Mater Res A, 53(4): 414–420.
               346(1): 43–47. http://doi.org/10.1002/masy.201400060  http://doi.org/10.1002/1097-4636(2000)53:4<414::AID-
           33.  Xing J-F, Zheng M-L and Duan X-M, 2015, Two-photon   JBM16>3.0.CO;2-M
               polymerization microfabrication of hydrogels: An advanced   45.  Wiria F E, Leong K F, Chua C K, et al., 2007, Poly-ε-
               3D printing technology for tissue engineering and drug   caprolactone/hydroxyapatite for tissue engineering scaffold
               delivery. Chem Soc Rev, 44(15): 5031–5039. http://doi.  fabrication via selective laser sintering. Acta Biomater, 3(1):
               org/10.1039/c5cs00278h                             1–12. http://doi.org/10.1016/j.actbio.2006.07.008
           34.  Xu T, Jin J, Gregory C, et al., 2005, Inkjet printing of viable   46.  Verbelen L, Dadbakhsh S, Van Den Eynde M, et al., 2016,
               mammalian cells. Biomaterials, 26(1): 93–99. http://doi.  Characterization of polyamide powders for determination
               org/10.1016/j.biomaterials.2004.04.011             of laser sintering processability. Eur Polym J, 75: 163–174.
           35.  Boland T, Xu T, Damon B, et al., 2006, Application of inkjet   http://doi.org/10.1016/j.eurpolymj.2015.12.014
               printing to tissue engineering. Biotechnol J, 1(9): 910–917.   47.  Drummer D, Rietzel D and Kühnlein F, 2010, Development
               http://doi.org/10.1002/biot.200600081              of a characterization approach for the sintering behavior
           36.  Horváth L, Umehara Y, Jud C, et al., 2015, Engineering an   of new thermoplastics for selective laser sintering. Phys
               in vitro air-blood barrier by 3D bioprinting. Sci Rep, 5(1):   Procedia, 5(PART B): 533–542. http://doi.org/10.1016/
               7974. http://doi.org/10.1038/srep07974             j.phpro.2010.08.081
           37.  Ng W L, Wang S, Yeong W Y, et al., 2016, Skin bioprinting:   48.  Gusarov A V, Laoui T, Froyen L, et al., 2003, Contact
               Impending reality or fantasy? Trends Biotechnol, 34(9):   thermal conductivity of a powder bed in selective laser

           10                          International Journal of Bioprinting (2018)–Volume 4, Issue 1
   10   11   12   13   14   15   16   17   18   19   20