Page 15 - IJB-4-1
P. 15
3D printing for drug manufacturing: A perspective on the future of pharmaceuticals
j.jconrel.2011.07.033 689–699. http://doi.org/10.1016/j.tibtech.2016.04.006
26. Alhnan M A, Okwuosa T C, Sadia M, et al., 2016, 38. Lee W, Debasitis J C, Lee V K, et al., 2009, Multi-layered
Emergence of 3D printed dosage forms: Opportunities culture of human skin fibroblasts and keratinocytes through
and challenges. Pharm Res, 33(8): 1817–1832. http://doi. three-dimensional freeform fabrication. Biomaterials,
org/10.1007/s11095-016-1933-1 30(8): 1587–1595. http://doi.org/10.1016/j.biomaterials.
27. Mazzoli A, 2013, Selective laser sintering in biomedical 2008.12.009
engineering. Med Biol Eng Comput, 51(3): 245–256. http:// 39. Panwar A and Tan L P, 2016, Current status of bioinks for
doi.org/10.1007/s11517-012-1001-x micro-extrusion-based 3D bioprinting. Molecules, 21(6):
28. Tan K H, Chua C K, Leong K F, et al., 2003, Scaf- 685. http://doi.org/10.3390/molecules21060685
fold development using selective laser sintering of 40. Vaezi M and Chua C K, 2011, Effects of layer thickness and
polyetheretherketone-hydroxyapatite biocomposite blends. binder saturation level parameters on 3D printing process.
Biomaterials, 24(18): 3115–3123. http://doi.org/10.1016/ Int J Adv Manuf Technol, 53(1–4): 275–284. http://doi.
S0142-9612(03)00131-5 org/10.1007/s00170-010-2821-1
29. Pardeike J, Strohmeier D M, Schrödl N, et al., 2011, 41. Lam C X F, Mo X M, Teoh S H, et al., 2002, Scaffold
Nanosuspensions as advanced printing ink for accurate development using 3D printing with a starch-based polymer.
dosing of poorly soluble drugs in personalized medicines. Mater Sci Eng C, 20(1–2): 49–56. http://doi.org/10.1016/
Int J Pharm, 420(1): 93–100. http://doi.org/10.1016/ S0928-4931(02)00012-7
j.ijpharm.2011.08.033 42. Giordano R A, Wu B M, Borland S W, et al., 1997,
30. Goole J and Amighi K, 2016, 3D printing in pharmaceutics: Mechanical properties of dense polylactic acid structures
A new tool for designing customized drug delivery systems. fabricated by three dimensional printing. J Biomater
Int J Pharm, 499(1–2): 376–394. http://doi.org/10.1016/ Sci Polym Ed, 8(1): 63–75. http://doi.org/10.1163/
j.ijpharm.2015.12.071 156856297X00588
31. Sokolsky-Papkov M, Agashi K, Olaye A, et al., 2014, 43. Antonov E N, Bagratashvili V N, Whitaker M J, et al., 2005,
Polymer carriers for drug delivery in tissue engineering. Adv Three-dimensional bioactive and biodegradable scaffolds
Drug Deliv Rev, 59(4–5): 187–206. http://doi.org/10.1016/ fabricated by surface-selective laser sintering. Adv Mater,
j.addr.2007.04.001 17(3): 327–330. http://doi.org/10.1002/adma.200400838
32. Vehse M, Petersen S, Sternberg K, et al., 2014, Drug delivery 44. Rimell J T and Marquis P M, 2000, Selective laser sintering
from poly(ethylene glycol) diacrylate scaffolds produced of ultra high molecular weight polyethylene for clinical
by DLC based micro-stereolithography. Macromol Symp, applications. J Biomed Mater Res A, 53(4): 414–420.
346(1): 43–47. http://doi.org/10.1002/masy.201400060 http://doi.org/10.1002/1097-4636(2000)53:4<414::AID-
33. Xing J-F, Zheng M-L and Duan X-M, 2015, Two-photon JBM16>3.0.CO;2-M
polymerization microfabrication of hydrogels: An advanced 45. Wiria F E, Leong K F, Chua C K, et al., 2007, Poly-ε-
3D printing technology for tissue engineering and drug caprolactone/hydroxyapatite for tissue engineering scaffold
delivery. Chem Soc Rev, 44(15): 5031–5039. http://doi. fabrication via selective laser sintering. Acta Biomater, 3(1):
org/10.1039/c5cs00278h 1–12. http://doi.org/10.1016/j.actbio.2006.07.008
34. Xu T, Jin J, Gregory C, et al., 2005, Inkjet printing of viable 46. Verbelen L, Dadbakhsh S, Van Den Eynde M, et al., 2016,
mammalian cells. Biomaterials, 26(1): 93–99. http://doi. Characterization of polyamide powders for determination
org/10.1016/j.biomaterials.2004.04.011 of laser sintering processability. Eur Polym J, 75: 163–174.
35. Boland T, Xu T, Damon B, et al., 2006, Application of inkjet http://doi.org/10.1016/j.eurpolymj.2015.12.014
printing to tissue engineering. Biotechnol J, 1(9): 910–917. 47. Drummer D, Rietzel D and Kühnlein F, 2010, Development
http://doi.org/10.1002/biot.200600081 of a characterization approach for the sintering behavior
36. Horváth L, Umehara Y, Jud C, et al., 2015, Engineering an of new thermoplastics for selective laser sintering. Phys
in vitro air-blood barrier by 3D bioprinting. Sci Rep, 5(1): Procedia, 5(PART B): 533–542. http://doi.org/10.1016/
7974. http://doi.org/10.1038/srep07974 j.phpro.2010.08.081
37. Ng W L, Wang S, Yeong W Y, et al., 2016, Skin bioprinting: 48. Gusarov A V, Laoui T, Froyen L, et al., 2003, Contact
Impending reality or fantasy? Trends Biotechnol, 34(9): thermal conductivity of a powder bed in selective laser
10 International Journal of Bioprinting (2018)–Volume 4, Issue 1

