Page 18 - IJB-4-1
P. 18
Lepowsky E and Tasoglu S
94. Reynolds T D, Mitchell S A and Balwinski K M, 2002, 101. Pietrzak K, Isreb A and Alhnan M A, 2015, A flexible-dose
Investigation of the effect of tablet surface area/volume on dispenser for immediate and extended release 3D printed
drug release from hydroxypropylmethylcellulose controlled- tablets. Eur J Pharm Biopharm, 96: 380–387. http://doi.
release matrix tablets. Drug Dev Ind Pharm, 28(4): 457–466. org/10.1016/j.ejpb.2015.07.027
http://doi.org/10.1081/DDC-120003007 102. Faralli A, Melander F, Larsen E K U, et al., 2014, Digital
95. Kamaly N, Yameen B, Wu J, et al., 2016, Degradable drug dosing: Dosing in drug assays by light-defined volumes
controlled-release polymers and polymeric nanoparticles: of hydrogels with embedded drug-loaded nanoparticles.
nd
Mechanisms of controlling drug release. Chem Rev, 116(4): In Proceedings of the 2 IEEE EMBS Micro and Nano-
2602–2663. http://doi.org/10.1021/acs.chemrev.5b00346 technology in Medicine Conference.
96. Lee B K, Yun Y H, Choi J S, et al., 2012, Fabrication of 103. Khaled S A, Burley J C, Alexander M R, et al., 2015, 3D
drug-loaded polymer microparticles with arbitrary geo- printing of five-in-one dose combination polypill with
metries using a piezoelectric inkjet printing system. Int J defined immediate and sustained release profiles. J Control
Release, 217: 308–314. http://doi.org/10.1016/j.jconrel.
Pharm, 427(2): 305–310. http://doi.org/10.1016/j.ijpharm.
2015.09.028
2012.02.011
97. Khaled S A, Burley J C, Alexander M R, et al., 2014, 104. Khaled S A, Burley J C, Alexander M R, et al., 2015, 3D
Desktop 3D printing of controlled release pharmaceutical printing of tablets containing multiple drugs with defined
bilayer tablets. Int J Pharm, 461(1–2): 105–111. http://doi. release profiles. Int J Pharm, 494(2): 643–650. http://doi.
org/10.1016/j.ijpharm.2015.07.067
org/10.1016/j.ijpharm.2013.11.021 105. Srai J S, Badman C, Krumme M, et al., 2015, Future supply
98. Huang X and Brazel C S, 2001, On the importance and chains enabled by continuous processing-opportunities and
mechanisms of burst release in matrix-controlled drug de-
challenges May 20–21, 2014 Continuous Manufacturing
livery systems. J Control Release, 73(2–3): 121–136. http:// Symposium. J Pharm Sci, 104(3): 840–849. http://doi.
doi.org/10.1016/S0168-3659(01)00248-6
org/10.1002/jps.24343
99. Lin C C and Metters A T, 2006, Hydrogels in controlled 106. Alomari M, Mohamed F H, Basit A W, et al., 2015, Per-
release formulations: Network design and mathematical
sonalised dosing: Printing a dose of one’s own medicine.
modeling. Adv Drug Deliv Rev, 58(12–13): 1379–1408. Int J Pharm, 494(2): 568–577. http://doi.org/10.1016/
http://doi.org/10.1016/j.addr.2006.09.004 j.ijpharm.2014.12.006
100. Bailey J M and Haddad W M, 2005, Drug dosing control in 107. Gudeman J, Jozwiakowski M, Chollet J, et al., 2013,
clinical pharmacology. IEEE Control Syst Mag, 25(2): 35– Potential risks of pharmacy compounding. Drugs R D, 13(1):
51. http://doi.org/10.1109/MCS.2005.1411383 1–8. http://doi.org/10.1007/s40268-013-0005-9
International Journal of Bioprinting (2018)–Volume 4, Issue 1 13

