Page 17 - IJB-4-1
P. 17
3D printing for drug manufacturing: A perspective on the future of pharmaceuticals
71. Molina I, Li S, Martinez M B, et al., 2001, Protein release http://doi.org/10.1038/nmat4544
from physically crosslinked hydrogels of the PLA/PEO/ 83. Bakarich S E, Gorkin R III, in het Panhuis M , et al., 2015,
PLA triblock copolymer-type. Biomaterials, 22(4): 363–369. 4D printing with mechanically robust, thermally actuating
http://doi.org/10.1016/S0142-9612(00)00192-7 hydrogels. Macromol Rapid Commun, 36(12): 1211–1217.
72. He Y, Yang F, Zhao H, et al., 2016, Research on the http://doi.org/10.1002/marc.201500079
printability of hydrogels in 3D bioprinting. Sci Rep, 6: 84. Ge Q, Sakhaei A H, Lee H, et al., 2016, Multimaterial 4D
29977. http://doi.org/10.1038/srep29977 printing with tailorable shape memory polymers. Sci Rep, 6:
73. Fu Y and Kao W J, 2010, Drug release kinetics and transport 31110. http://doi.org/10.1038/srep31110
mechanisms of non-degradable and degradable polymeric 85. Gao B, Yang Q, Zhao X, et al., 2016, 4D bioprinting for
delivery systems. Expert Opin Drug Deliv, 7(4): 429–444. biomedical applications. Trends Biotechnol, 34(9): 746–756.
http://doi.org/10.1517/17425241003602259 http://doi.org/10.1016/j.tibtech.2016.03.004
74. Duffy C V, David L and Crouzier T, 2015, Covalently- 86. Neffe A T, Hanh B D, Steuer S, et al., 2009, Polymer
crosslinked mucin biopolymer hydrogels for sustained drug networks combining controlled drug release, biodegradation,
delivery. Acta Biomater, 20: 51–59. http://doi.org/10.1016/ and shape memory capability. Adv Mater, 21(32–33): 3394–
j.actbio.2015.03.024 3398. http://doi.org/10.1002/adma.200802333
75. Schoenmakers R G, van de Wetering P, Elbert D L, et al., 87. Nagahama K, Ueda Y, Ouchi T, et al., 2009, Biodegradable
2004, The effect of the linker on the hydrolysis rate of drug- shape-memory polymers exhibiting sharp thermal transitions
linked ester bonds. J Control Release, 95(2): 291–300. http:// and controlled drug release. Biomacromolecules, 10(7):
doi.org/10.1016/j.jconrel.2003.12.009 1789–1794. http://doi.org/10.1021/bm9002078
76. Shen W, Zhang K, Kornfield J A, et al., 2006, Tuning the 88. Kashif M, Yun B M, Lee K S, et al., 2016, Biodegradable
erosion rate of artificial protein hydrogels through control shape-memory poly(ε-caprolactone)/polyhedral oligomeric
of network topology. Nat Mater, 5(2): 153–158. http://doi. silsequioxane nanocomposites: Sustained drug release and
org/10.1038/nmat1573 hydrolytic degradation. Mater Lett, 166: 125–128. http://doi.
77. Metters A T, Bowman C N and Anseth K S, 2000, A org/10.1016/j.matlet.2015.12.051
statistical kinetic model for the bulk degradation of PLA-b- 89. Musiał-Kulik M, Kasperczyk J, Smola A, et al., 2014,
PEG-b-PLA hydrogel networks. J Phys Chem B, 104(30): Double layer paclitaxel delivery systems based on
7043–7049. http://doi.org/10.1021/jp000523t bioresorbable terpolymer with shape memory properties.
78. Martens P, Metters A T, Anseth K S, et al., 2001, A Int J Pharm, 465(1–2): 291–298. http://doi.org/10.1016/
generalized bulk-degradation model for hydrogel networks j.ijpharm.2014.01.029
formed from multivinyl cross-linking molecules. J Phys 90. Wache H M, Tartakowska D J, Hentrich A, et al., 2003,
Chem B, 105(22): 5131–5138. http://doi.org/10.1021/ Development of a polymer stent with shape memory effect
jp004102n as a drug delivery system. J Mater Sci Mater Med, 14(2):
79. Wischke C, Neffe A T, Steuer S, et al., 2009, Evaluation of 109–112. http://doi.org/10.1023/A:1022007510352
a degradable shape-memory polymer network as matrix for 91. Xiao Y, Zhou S, Wang L, et al., 2010, Crosslinked poly(ε-
controlled drug release. J Control Release, 138(3): 243–250. caprolactone)/poly(sebacic anhydride) composites com-
http://doi.org/10.1016/j.jconrel.2009.05.027 bining biodegradation, controlled drug release and shape
80. Chen H, Li Y, Liu Y, et al., 2014, Highly pH-sensitive memory effect. Compos B Eng, 41(7): 537–542. http://doi.
polyurethane exhibiting shape memory and drug release. org/10.1016/j.compositesb.2010.07.001
Polym Chemi, 5(17): 5168–5174. http://doi.org/10.1039/ 92. Banks J, 2013, Adding value in additive manufacturing:
C4PY00474D Researchers in the United Kingdom and Europe look to 3D
81. Wang K, Strandman S and Zhu X X, 2017, A mini review: printing for customization. IEEE Pulse, 4(6): 22–26. http://
Shape memory polymers for biomedical applications. Front doi.org/10.1109/MPUL.2013.2279617
Chem Sci Eng, 11(2): 1–11. http://doi.org/10.1007/s11705- 93. Goyanes A, Robles Martinez P, Buanz A, et al., 2015,
017-1632-4 Effect of geometry on drug release from 3D printed tablets.
82. Sydney Gladman A, Matsumoto E A, Nuzzo R G, et al., Int J Pharm, 494(2): 657–663. http://doi.org/10.1016/
2016, Biomimetic 4D printing. Nat Mater, 15(4): 413–418. j.ijpharm.2015.04.069
12 International Journal of Bioprinting (2018)–Volume 4, Issue 1

