Page 17 - IJB-4-1
        P. 17
     3D printing for drug manufacturing: A perspective on the future of pharmaceuticals
           71.  Molina I, Li S, Martinez M B, et al., 2001, Protein release   http://doi.org/10.1038/nmat4544
               from physically crosslinked hydrogels of the PLA/PEO/  83.  Bakarich S E, Gorkin R III, in het Panhuis M , et al., 2015,
               PLA triblock copolymer-type. Biomaterials, 22(4): 363–369.   4D printing with mechanically robust, thermally actuating
               http://doi.org/10.1016/S0142-9612(00)00192-7       hydrogels. Macromol Rapid Commun, 36(12): 1211–1217.
           72.  He Y, Yang F, Zhao H, et al., 2016, Research on the   http://doi.org/10.1002/marc.201500079
               printability of hydrogels in 3D bioprinting. Sci Rep, 6:   84.  Ge Q, Sakhaei A H, Lee H, et al., 2016, Multimaterial 4D
               29977. http://doi.org/10.1038/srep29977            printing with tailorable shape memory polymers. Sci Rep, 6:
           73.  Fu Y and Kao W J, 2010, Drug release kinetics and transport   31110. http://doi.org/10.1038/srep31110
               mechanisms of non-degradable and degradable polymeric   85.  Gao B, Yang Q, Zhao X, et al., 2016, 4D bioprinting for
               delivery systems. Expert Opin Drug Deliv, 7(4): 429–444.   biomedical applications. Trends Biotechnol, 34(9): 746–756.
               http://doi.org/10.1517/17425241003602259           http://doi.org/10.1016/j.tibtech.2016.03.004
           74.  Duffy C V, David L and Crouzier T, 2015, Covalently-  86.  Neffe A T, Hanh B D, Steuer S, et al., 2009, Polymer
               crosslinked mucin biopolymer hydrogels for sustained drug   networks combining controlled drug release, biodegradation,
               delivery. Acta Biomater, 20: 51–59. http://doi.org/10.1016/  and shape memory capability. Adv Mater, 21(32–33): 3394–
               j.actbio.2015.03.024                               3398. http://doi.org/10.1002/adma.200802333
           75.  Schoenmakers R G, van de Wetering P, Elbert D L, et al.,   87.  Nagahama K, Ueda Y, Ouchi T, et al., 2009, Biodegradable
               2004, The effect of the linker on the hydrolysis rate of drug-  shape-memory polymers exhibiting sharp thermal transitions
               linked ester bonds. J Control Release, 95(2): 291–300. http://  and controlled drug release. Biomacromolecules, 10(7):
               doi.org/10.1016/j.jconrel.2003.12.009              1789–1794. http://doi.org/10.1021/bm9002078
           76.  Shen W, Zhang K, Kornfield J A, et al., 2006, Tuning the   88.  Kashif M, Yun B M, Lee K S, et al., 2016, Biodegradable
               erosion rate of artificial protein hydrogels through control   shape-memory poly(ε-caprolactone)/polyhedral oligomeric
               of network topology. Nat Mater, 5(2): 153–158. http://doi.  silsequioxane nanocomposites: Sustained drug release and
               org/10.1038/nmat1573                               hydrolytic degradation. Mater Lett, 166: 125–128. http://doi.
           77.  Metters A T, Bowman C N and Anseth K S, 2000, A   org/10.1016/j.matlet.2015.12.051
               statistical kinetic model for the bulk degradation of PLA-b-  89.  Musiał-Kulik M, Kasperczyk J, Smola A, et al., 2014,
               PEG-b-PLA hydrogel networks. J Phys Chem B, 104(30):   Double layer paclitaxel delivery systems based on
               7043–7049. http://doi.org/10.1021/jp000523t        bioresorbable terpolymer with shape memory properties.
           78.  Martens P, Metters A T, Anseth K S, et al., 2001, A   Int J Pharm, 465(1–2): 291–298. http://doi.org/10.1016/
               generalized bulk-degradation model for hydrogel networks   j.ijpharm.2014.01.029
               formed from multivinyl cross-linking molecules. J Phys   90.  Wache H M, Tartakowska D J, Hentrich A, et al., 2003,
               Chem B, 105(22): 5131–5138. http://doi.org/10.1021/  Development of a polymer stent with shape memory effect
               jp004102n                                          as a drug delivery system. J Mater Sci Mater Med, 14(2):
           79.  Wischke C, Neffe A T, Steuer S, et al., 2009, Evaluation of   109–112. http://doi.org/10.1023/A:1022007510352
               a degradable shape-memory polymer network as matrix for   91.  Xiao Y, Zhou S, Wang L, et al., 2010, Crosslinked poly(ε-
               controlled drug release. J Control Release, 138(3): 243–250.   caprolactone)/poly(sebacic anhydride) composites com-
               http://doi.org/10.1016/j.jconrel.2009.05.027       bining biodegradation, controlled drug release and shape
           80.  Chen H, Li Y, Liu Y, et al., 2014, Highly pH-sensitive   memory effect. Compos B Eng, 41(7): 537–542. http://doi.
               polyurethane exhibiting shape memory and drug release.   org/10.1016/j.compositesb.2010.07.001
               Polym Chemi, 5(17): 5168–5174. http://doi.org/10.1039/  92.  Banks J, 2013, Adding value in additive manufacturing:
               C4PY00474D                                         Researchers in the United Kingdom and Europe look to 3D
           81.  Wang K, Strandman S and Zhu X X, 2017, A mini review:   printing for customization. IEEE Pulse, 4(6): 22–26. http://
               Shape memory polymers for biomedical applications. Front   doi.org/10.1109/MPUL.2013.2279617
               Chem Sci Eng, 11(2): 1–11. http://doi.org/10.1007/s11705-  93.  Goyanes A, Robles Martinez P, Buanz A, et al., 2015,
               017-1632-4                                         Effect of geometry on drug release from 3D printed tablets.
           82.  Sydney Gladman A, Matsumoto E A, Nuzzo R G, et al.,   Int J Pharm, 494(2): 657–663. http://doi.org/10.1016/
               2016, Biomimetic 4D printing. Nat Mater, 15(4): 413–418.   j.ijpharm.2015.04.069
           12                          International Journal of Bioprinting (2018)–Volume 4, Issue 1
     	
