Page 29 - IJB-4-1
P. 29

Fan Liu, et al.

              Hydrogels Handbook (RM Ottenbrite ed.), Springer: New   chemrev.5b00303
              York, NY, USA, 269–284. https://doi.org/10.1007/978–1–  38.  Loo Y, Hauser C A, 2015, Bioprinting synthetic self-
              4419–5919–5_14                                      assembling peptide hydrogels for biomedical applications.
           27.  Xu M, Wang X, Yan Y, et al. ,2010, A cell-assembly derived   Biomed Mater, 11(1): 014103. https://doi.org/10.1088/1748–
              physiological 3D model of the metabolic syndrome, based   6041/11/1/014103
              on adipose-derived stromal cells and a gelatin/alginate/  39.  Colina M, Serra P, Fernandez-Pradas J M, et al., 2005, DNA
              fibrinogen matrix.Biomaterials, 31 (14): 3868–3877. https://  deposition through laser induced forward transfer. Biosens
              doi.org/10.1016/j.biomaterials.2010.01.111          Bioelectron, 20(8): 1638–1642. https://doi.org/10.1016/
           28.  Xu M, Yan Y, Liu H, et al., 2009, Control adipose-derived   j.bios.2004.08.047
              stromal cells differentiation into adipose and endothelial cells   40.  Barron J A, Ringeisen B R, Kim H, et al., 2004, Application
              in a 3-D structure established by cell-assembly technique.   of laser printing to mammalian cells. Thin Solid Films, s453–
              Advances in Obstetrics & Gynecology, 57 (1): 279–283.  454(2): 383–387. https://doi.org/10.1016/j.tsf.2003.11.161
           29.  Li S, Xiong Z, Wang X, et al., 2009, Direct fabrication of a   41.  Koch L, Kuhn S, Sorg H, et al., 2010, Laser printing of skin
              hybrid cell/hydrogel construct via a double-nozzle assembling   cells and human stem cells. Tissue Eng Part C Methods,
              technology. J Bioact Compat Polym, 24(3): 249–264. https://  16(5): 847–854. https://doi.org/10.1089/ten
              doi.org/10.1177/0883911509104094                 42.  Gruene M, Pflaum M, Hess C, et al., 2011, Laser printing
           30.  Li S, Yan Y, Xiong Z, et al., 2009, Gradient hydrogel   of three-dimensional multicellular arrays for studies of cell-
              construct based on an improved cell assembling system.   cell and cell-environment interactions. Tissue Eng Part C
              J Bioact Compat Polym,  24(1):  84–99.  https://doi.  Methods, 17(10): 973–982. https://doi.org/10.1089/ten
              org/10.1177/0883911509103357                     43.  Matias J M, Bartolo P J, Pontes A V, 2009, Modeling and
           31.  Xu Y, Wang X, 2015, Fluid and cell behaviors along a 3D   simulation of photofabrication processes using unsaturated
              printed alginate/gelatin/fibrin channel. Bioeng Biotech,   polyester resins. J Appl Polym Sci, 114(6): 3673–3685.
              112(8): 1683–1695. https://doi.org/10.1002/bit.25579.  https://doi.org/10.1002/app.30405
           32.  Zhao X, Du S, Chai L, et al., 2015, Anti-cancer drug   44.  Peltola S M, Melchels F P, Grijpma D W, et al., 2008,
              screening based on an adipose-derived stem cell/hepatocyte   A review of rapid prototyping techniques for tissue
              3D printing technique. J Stem Cell Res Ther, 5(4): 273.   engineering purposes. Ann Med, 40(4): 268–280. https://doi.
              https://doi.org/10.4172/2157–7633.1000273           org/10.1080/07853890701881788
           33.  Xu W, Wang X, Yan Y, et al., 2008, Rapid prototyping   45.  Bartolo P J, 2011, Stereolithography: Materials, processes
              of polyurethane for the creation of vascular systems.   and applications. Springer.
              J Bioact Compat Polym, 23(2): 103–114. https://doi.  46.  Chan V, Zorlutuna P, Jeong J H, et al., 2010, Three-dimensional
              org/10.1177/0883911507088271                        photopatterning of hydrogels using stereolithography for long-
           34.  Xu W, Wang X H, Yan Y N, et al., 2008, A polyurethane-  term cell encapsulation. Lab Chip, 10(16): 2062–2070.
              gelatin hybrid construct for the manufacturing of implantable   https://doi.org/10.1039/c004285d
              bioartificial livers. J Bioact Compat Polym, 23(5): 409–422.   47.  Mironi-Harpaz I, Wang D Y, Venkatraman S, et al., 2012,
              https://doi.org/10.1177/0883911508095517            Photopolymerization of cell-encapsulating hydrogels:
           35.  Kolesky D B, Truby R L, Gladman A S, et al., 2014,   Crosslinking efficiency versus cytotoxicity. Acta Biomater, 8(5):
              Bioprinting: 3D bioprinting of vascularized, heterogeneous   1838–1848. https://doi.org/10.1016/j.actbio.2011.12.034
              cell-laden tissue constructs. Adv Mater, 26(19): 3124–3130.   48.  Arcaute K, Mann B K, Wicker R B, 2006, Stereolithography
              https://doi.org/10.1002/adma.201305506              of three-dimensional bioative poly(ethylene glycol) constructs
           36.  Melchels F P, Dhert W J, Hutmacher D W, et al., 2014,   with encapsulated cells. Ann Biomed Eng, 34(9): 1429–1441.
              Development and characterisation of a new bioink for   https://doi.org/10.1007/s10439–006–9156–y
              additive tissue manufacturing. J Mater Chem B, 2(16): 2282–  49.  Wang S, Lee J M, Yeong W Y, 2015, Smart hydrogels for
              2289.  https://doi.org/10.1039/C3TB21280G           bioprinting.  Int J Bioprint, 1: 3–14. https://doi.org/10.18063/
           37.  Jungst T, Smolan W, Schacht K, et al., 2016, Strategies   IJB.2015.01.005
              and molecular design criteria for 3D printable hydrogels.   50.  Ng W L, Lee J M, Yeong W Y, et al., 2017, Microvalve-based
              Chem Rev, 116(3): 1496–1539. https://doi.org/10.1021/acs.  bioprinting-process, bio-inks and applications. Biomater Sci,

                                       International Journal of Bioprinting (2018)–Volume 4, Issue 1        11
   24   25   26   27   28   29   30   31   32   33   34