Page 74 - IJB-4-1
P. 74

Shuai C, et al.

           26. Amalric J, Mutin P H, Guerrero G, et al., 2009, Phosphonate   behavior and mechanical properties of polypropylene/
             monolayers functionalized by silver thiolate species as   halloysite composites. Polymer, 48(25): 7374–7384. http://
             antibacterial nanocoatings on titanium and stainless steel.   dx.doi.org/10.1016/j.polymer.2007.10.005
             J Mater Chem, 19(1): 141–149. http://dx.doi.org/10.1039/  38. Li H Y, Tan Y Q, Zhang L, et al., 2012, Bio-filler from waste
             b813344a                                            shellfish shell: Preparation, characterization, and its effect on
           27. Simchi A, Tamjid E, Pishbin F, et al., 2011, Recent progress in   the mechanical properties on polypropylene composites. J
             inorganic and composite coatings with bactericidal capability   Hazard Mater, 217–218: 256–262. http://dx.doi.org/10.1016/
             for orthopaedic applications. Nanomedicine, 7(1): 22–39.   j.jhazmat.2012.03.028
             http://dx.doi.org/10.1016/j.nano.2010.10.005      39. He F, Fan J, Lau S, 2008, Thermal, mechanical, and dielectric
           28. Ye L, Liu J, Jiang Z, et al., 2013, Facets coupling of BiOBr-  properties of graphite reinforced poly(vinylidene fluoride)
             g-C 3 N 4  composite photocatalyst for enhanced visible-light-  composites. Polym Test, 27(8): 964–970. http://dx.doi.
             driven photocatalytic activity. Appl Catal B, 142–143: 1–7.   org/10.1016/j.polymertesting.2008.08.010
             http://dx.doi.org/10.1016/j.apcatb.2013.04.058    40. Maity J, Jacob C, Das C K, et al., 2008, Direct fluorination of
           29. Wu D, Wang B, Wang W, et al., 2015, Visible-light-driven   Twaron fiber and the mechanical, thermal and crystallization
             BiOBr nanosheets for highly facet-dependent photocatalytic   behaviour of short Twaron fiber reinforced polypropylene
             inactivation of Escherichia coli. J Mater Chem A, 3(29):   composites. Compos Part A Appl Sci Manuf, 39(5): 825–833.
             15148–15155. http://dx.doi.org/10.1039/c5ta02757h   http://dx.doi.org/10.1016/j.compositesa.2008.01.009
           30. Bruzauskaite I, Bironaite D, Bagdonas E, et al., 2016,   41. Peng D, Qin W, Wu X, et al., 2015, Improvement of the
             Scaffolds and cells for tissue regeneration: Different scaffold   resistance performance of carbon/cyanate ester composites
             pore sizes-different cell effects. Cytotechnology, 68(3): 355–  during vacuum electron radiation by reduced graphene oxide
             369. http://dx.doi.org/10.1007/s10616-015-9895-4    modified TiO 2 . RSC Adv, 5(94): 77138–77146. http://dx.doi.
           31. Roosa S M, Kemppainen J M, Moffitt E N, et al., 2010, The   org/10.1039/c5ra11113g
             pore size of polycaprolactone scaffolds has limited influence   42. Liu G, Zhou T, Liu W, et al., 2014, Enhanced desulfurization
             on bone regeneration in an in vivo model. J Biomed Mater Res   performance of PDMS membranes by incorporating silver
             A, 92(1): 359–368. http://dx.doi.org/10.1002/jbm.a.32381  decorated dopamine nanoparticles. J Mater Chem A, 2(32):
           32. Schek R M, Wilke E N, Hollister S J, et al., 2006, Combined   12907. http://dx.doi.org/10.1039/c4ta01778a
             use of designed scaffolds and adenoviral gene therapy for   43. Lee S-W, Han S M and Nix W D, 2009, Uniaxial compression
             skeletal tissue engineering. Biomaterials, 27(7): 1160–1166.   of fcc Au nanopillars on an MgO substrate: The effects of
             http://dx.doi.org/10.1016/j.biomaterials.2005.07.029  prestraining and annealing. Acta Mater, 57(15): 4404–4415.
           33. Ten E, Jiang L, Wolcott M P, 2012, Crystallization kinetics   http://dx.doi.org/10.1016/j.actamat.2009.06.002
             of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose   44. Applerot G, Lellouche J, Lipovsky A, et al., 2012, Under-
             nanowhiskers composites. Carbohydr Polym, 90(1): 541.   standing the antibacterial mechanism of CuO nanoparticles:
             http://dx.doi.org/10.1016/j.carbpol.2012.05.076     Revealing the route of induced oxidative stress. Small, 8(21):
           34. Shuai C, Guo W, Gao C, et al., 2017, Calcium silicate im-  3326–3337. http://dx.doi.org/10.1002/smll.201200772
             proved bioactivity and mechanical properties of poly(3-  45. Applerot G, Lipovsky A, Dror R, et al., 2009, Enhanced
             hydroxybutyrate-co-3-hydroxyvalerate) scaffolds. Polymers,   antibacterial activity of nanocrystalline ZnO due to increased
             9(5): 175. http://dx.doi.org/10.3390/polym9050175   ROS-mediated cell injury. Adv Funct Mater, 19(6): 842–852.
           35. Yin Y, Zhang G, Xia Y, 2002, Synthesis and characterization of   http://dx.doi.org/10.1002/adfm.200801081
             MgO nanowires through a vapor-phase precursor method. Adv   46. Sawai J, Kojima H, Igarashi H, et al., 2000, Antibacterial
             Funct Mater, 12(4): 293–298. http://dx.doi.org/10.1002/1616-  characteristics of magnesium oxide powder. World J Microbiol
             3028(20020418)12:4<293::aid-adfm293>3.0.co;2-u      Biotechnol, 16(2): 187–194. http://dx.doi.org/10.1023/
           36. Hutmacher D W, Schantz J T, Lam C X, et al., 2007, State   A:1008916209784
             of the art and future directions of scaffold-based bone   47. Krishnamoorthy K, Manivannan G, Kim S J, et al., 2012,
             engineering from a biomaterials perspective. J Tissue Eng   Antibacterial activity of MgO nanoparticles based on lipid
             Regen Med, 1(4): 245–260. http://dx.doi.org/10.1002/term.24  peroxidation by oxygen vacancy. J Nanopart Res, 14(9): 1063.
           37. Ning N-y, Yin Q-j, Luo F, et al., 2007, Crystallization   http://dx.doi.org/10.1007/s11051-012-1063-6

                                       International Journal of Bioprinting (2018)–Volume 4, Issue 1        13
   69   70   71   72   73   74   75   76   77   78   79