Page 74 - IJB-4-1
P. 74
Shuai C, et al.
26. Amalric J, Mutin P H, Guerrero G, et al., 2009, Phosphonate behavior and mechanical properties of polypropylene/
monolayers functionalized by silver thiolate species as halloysite composites. Polymer, 48(25): 7374–7384. http://
antibacterial nanocoatings on titanium and stainless steel. dx.doi.org/10.1016/j.polymer.2007.10.005
J Mater Chem, 19(1): 141–149. http://dx.doi.org/10.1039/ 38. Li H Y, Tan Y Q, Zhang L, et al., 2012, Bio-filler from waste
b813344a shellfish shell: Preparation, characterization, and its effect on
27. Simchi A, Tamjid E, Pishbin F, et al., 2011, Recent progress in the mechanical properties on polypropylene composites. J
inorganic and composite coatings with bactericidal capability Hazard Mater, 217–218: 256–262. http://dx.doi.org/10.1016/
for orthopaedic applications. Nanomedicine, 7(1): 22–39. j.jhazmat.2012.03.028
http://dx.doi.org/10.1016/j.nano.2010.10.005 39. He F, Fan J, Lau S, 2008, Thermal, mechanical, and dielectric
28. Ye L, Liu J, Jiang Z, et al., 2013, Facets coupling of BiOBr- properties of graphite reinforced poly(vinylidene fluoride)
g-C 3 N 4 composite photocatalyst for enhanced visible-light- composites. Polym Test, 27(8): 964–970. http://dx.doi.
driven photocatalytic activity. Appl Catal B, 142–143: 1–7. org/10.1016/j.polymertesting.2008.08.010
http://dx.doi.org/10.1016/j.apcatb.2013.04.058 40. Maity J, Jacob C, Das C K, et al., 2008, Direct fluorination of
29. Wu D, Wang B, Wang W, et al., 2015, Visible-light-driven Twaron fiber and the mechanical, thermal and crystallization
BiOBr nanosheets for highly facet-dependent photocatalytic behaviour of short Twaron fiber reinforced polypropylene
inactivation of Escherichia coli. J Mater Chem A, 3(29): composites. Compos Part A Appl Sci Manuf, 39(5): 825–833.
15148–15155. http://dx.doi.org/10.1039/c5ta02757h http://dx.doi.org/10.1016/j.compositesa.2008.01.009
30. Bruzauskaite I, Bironaite D, Bagdonas E, et al., 2016, 41. Peng D, Qin W, Wu X, et al., 2015, Improvement of the
Scaffolds and cells for tissue regeneration: Different scaffold resistance performance of carbon/cyanate ester composites
pore sizes-different cell effects. Cytotechnology, 68(3): 355– during vacuum electron radiation by reduced graphene oxide
369. http://dx.doi.org/10.1007/s10616-015-9895-4 modified TiO 2 . RSC Adv, 5(94): 77138–77146. http://dx.doi.
31. Roosa S M, Kemppainen J M, Moffitt E N, et al., 2010, The org/10.1039/c5ra11113g
pore size of polycaprolactone scaffolds has limited influence 42. Liu G, Zhou T, Liu W, et al., 2014, Enhanced desulfurization
on bone regeneration in an in vivo model. J Biomed Mater Res performance of PDMS membranes by incorporating silver
A, 92(1): 359–368. http://dx.doi.org/10.1002/jbm.a.32381 decorated dopamine nanoparticles. J Mater Chem A, 2(32):
32. Schek R M, Wilke E N, Hollister S J, et al., 2006, Combined 12907. http://dx.doi.org/10.1039/c4ta01778a
use of designed scaffolds and adenoviral gene therapy for 43. Lee S-W, Han S M and Nix W D, 2009, Uniaxial compression
skeletal tissue engineering. Biomaterials, 27(7): 1160–1166. of fcc Au nanopillars on an MgO substrate: The effects of
http://dx.doi.org/10.1016/j.biomaterials.2005.07.029 prestraining and annealing. Acta Mater, 57(15): 4404–4415.
33. Ten E, Jiang L, Wolcott M P, 2012, Crystallization kinetics http://dx.doi.org/10.1016/j.actamat.2009.06.002
of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose 44. Applerot G, Lellouche J, Lipovsky A, et al., 2012, Under-
nanowhiskers composites. Carbohydr Polym, 90(1): 541. standing the antibacterial mechanism of CuO nanoparticles:
http://dx.doi.org/10.1016/j.carbpol.2012.05.076 Revealing the route of induced oxidative stress. Small, 8(21):
34. Shuai C, Guo W, Gao C, et al., 2017, Calcium silicate im- 3326–3337. http://dx.doi.org/10.1002/smll.201200772
proved bioactivity and mechanical properties of poly(3- 45. Applerot G, Lipovsky A, Dror R, et al., 2009, Enhanced
hydroxybutyrate-co-3-hydroxyvalerate) scaffolds. Polymers, antibacterial activity of nanocrystalline ZnO due to increased
9(5): 175. http://dx.doi.org/10.3390/polym9050175 ROS-mediated cell injury. Adv Funct Mater, 19(6): 842–852.
35. Yin Y, Zhang G, Xia Y, 2002, Synthesis and characterization of http://dx.doi.org/10.1002/adfm.200801081
MgO nanowires through a vapor-phase precursor method. Adv 46. Sawai J, Kojima H, Igarashi H, et al., 2000, Antibacterial
Funct Mater, 12(4): 293–298. http://dx.doi.org/10.1002/1616- characteristics of magnesium oxide powder. World J Microbiol
3028(20020418)12:4<293::aid-adfm293>3.0.co;2-u Biotechnol, 16(2): 187–194. http://dx.doi.org/10.1023/
36. Hutmacher D W, Schantz J T, Lam C X, et al., 2007, State A:1008916209784
of the art and future directions of scaffold-based bone 47. Krishnamoorthy K, Manivannan G, Kim S J, et al., 2012,
engineering from a biomaterials perspective. J Tissue Eng Antibacterial activity of MgO nanoparticles based on lipid
Regen Med, 1(4): 245–260. http://dx.doi.org/10.1002/term.24 peroxidation by oxygen vacancy. J Nanopart Res, 14(9): 1063.
37. Ning N-y, Yin Q-j, Luo F, et al., 2007, Crystallization http://dx.doi.org/10.1007/s11051-012-1063-6
International Journal of Bioprinting (2018)–Volume 4, Issue 1 13

