Page 75 - IJB-4-1
P. 75
An nMgO containing scaffold: Antibacterial activity, degradation properties and cell responses
48. Sterrer M, Diwald O, Knözinger E, 2000, Vacancies and Cem Concr Res, 57: 1–12. http://dx.doi.org/10.1016/
electron deficient surface anions on the surface of MgO j.cemconres.2013.12.007
nanoparticles. J Phys Chem B, 104(15): 3601–3607. http:// 59. Shan D, Shi Y, Duan S, et al., 2013, Electrospun magnetic
dx.doi.org/10.1021/jp993924l poly (ʟ-lactide) (PLLA) nanofibers by incorporating PLLA-
49. Berger T, Sterrer M, Stankic S, et al., 2005, Trapping of stabilized Fe 3 O 4 nanoparticles. Mater Sci Eng C, 33(6): 3498–
pho to generated charges in oxide nanoparticles. Mater 3505. http://dx.doi.org/10.1016/j.msec.2013.04.040
Sci Eng C, 25(5–8): 664–668. http://dx.doi.org/10.1016/ 60. Marom R, Shur I, Solomon R, et al., 2005, Characterization
j.msec.2005.06.013
50. Sterrer M, Berger T, Diwald O, et al., 2003, Energy transfer on of adhesion and differentiation markers of osteogenic marrow
the MgO surface, monitored by UV-induced H 2 chemisorption. stromal cells. J Cell Physiol, 202(1): 41–48. http://dx.doi.
J Am Chem Soc, 125(1): 195–199. http://dx.doi.org/10.1021/ org/10.1002/jcp.20109
ja028059o 61. Wang F, Zhai D, Wu C, et al., 2016, Multifunctional
51. Long T C, Saleh N, Tilton R D, et al., 2006, Titanium dioxide mesoporous bioactive glass/upconversion nanoparticle
(P25) produces reactive oxygen species in immortalized brain nanocomposites with strong red emission to monitor drug
microglia (BV2): Implications for nanoparticle neurotoxicity. delivery and stimulate osteogenic differentiation of stem cells.
Environ Sci Technol, 40(14): 4346–4352. http://dx.doi. Nano Res, 9(4): 1193–1208. http://dx.doi.org/10.1007/s12274-
org/10.1021/es060589n 016-1015-z
52. Xia T, Kovochich M, Brant J, et al., 2006, Comparison of the 62. Zhang J, Zhu Y, 2014, Synthesis and characterization of
abilities of ambient and manufactured nanoparticles to induce CeO 2 -incorporated mesoporous calcium-silicate materials.
cellular toxicity according to an oxidative stress paradigm. Microporous Mesoporous Mater, 197: 244–251. http://dx.doi.
Nano Lett, 6(8): 1794–1807. http://dx.doi.org/10.1021/
org/10.1016/j.micromeso.2014.06.018
nl061025k
53. Jin T, He Y, 2011, Antibacterial activities of magnesium oxide 63. Hoppe A, Guldal N S, Boccaccini A R, 2011, A re view of the
(MgO) nanoparticles against foodborne pathogens. J Nanopart biological response to ionic dissolution pro ducts from bioactive
Res, 13(12): 6877–6885. http://dx.doi.org/10.1007/s11051- glasses and glass-ceramics. Biomaterials, 32(11): 2757–2774.
011-0595-5 http://dx.doi.org/10.1016/j.biomaterials.2011.01.004
54. Yamamoto O, Sawai J, Kojima H, et al., 2002, Effect of 64. Yamniuk A P, Vogel H J, 2005, Calcium- and magnesium-
mixing ratio on bactericidal action of MgO–CaO powders. dependent interactions between calcium- and integrin-binding
J Mater Sci Mater Med, 13(8): 789–792. http://dx.doi. protein and the integrin αIIb cytoplasmic domain. Protein Sci,
org/10.1023/A:1016179225955 14(6): 1429–1437. http://dx.doi.org/10.1110/ps.041312805
55. Jeevanandam P, Klabunde K, 2002, A study on adsorption 65. Zreiqat H, Howlett C, Zannettino A, et al., 2002, Mechanisms
of surfactant molecules on magnesium oxide nanocrystals of magnesium-stimulated adhesion of osteoblastic cells to
prepared by an aerogel route. Langmuir, 18(13): 5309–5313. commonly used orthopaedic implants. J Biomed Mater Res A,
http://dx.doi.org/10.1021/la0200921 62(2): 175–184. http://dx.doi.org/10.1002/jbm.10270
56. He Y, Ingudam S, Reed S, et al., 2016, Study on the 66. Bouvard D, Pouwels J, De Franceschi N, et al., 2013, Integrin
mechanism of antibacterial action of magnesium oxide inactivators: Balancing cellular functions in vitro and in
nanoparticles against foodborne pathogens. J Nanobiotechnol,
14(1): 54. http://dx.doi.org/10.1186/s12951-016-0202-0 vivo. Nat Rev Mol Cell Biol, 14(7): 430–442. http://dx.doi.
org/10.1038/nrm3599
57. Salomao R, Bittencourt L, Pandolfelli V, 2007, A novel
approach for magnesia hydration assessment in refractory 67. Bourboulia D, Stetler-Stevenson W G, 2010, Matrix me ta llo-
castables. Ceram Int, 33(5): 803–810. http://dx.doi. proteinases (MMPs) and tissue inhibitors of metalloproteinases
org/10.1016/j.ceramint.2006.01.004 (TIMPs): Positive and negative regulators in tumor cell
58. Mo L, Deng M, Tang M, et al., 2014, MgO expansive ce- adhesion. Semin Cancer Biol, 20(3): 161–168. http://dx.doi.
ment and concrete in China: Past, present and future. org/10.1016/j.semcancer.2010.05.002
14 International Journal of Bioprinting (2018)–Volume 4, Issue 1

