Page 75 - IJB-4-1
P. 75

An nMgO containing scaffold: Antibacterial activity, degradation properties and cell responses

           48. Sterrer M, Diwald O, Knözinger E, 2000, Vacancies and   Cem Concr Res, 57: 1–12. http://dx.doi.org/10.1016/
             electron deficient surface anions on the surface of MgO   j.cemconres.2013.12.007
             nanoparticles. J Phys Chem B, 104(15): 3601–3607. http://  59. Shan D, Shi Y, Duan S, et al., 2013, Electrospun magnetic
             dx.doi.org/10.1021/jp993924l                        poly (ʟ-lactide) (PLLA) nanofibers by incorporating PLLA-
           49. Berger T, Sterrer M, Stankic S, et al., 2005, Trapping of   stabilized Fe 3 O 4  nanoparticles. Mater Sci Eng C, 33(6): 3498–
             pho to generated charges in oxide nanoparticles. Mater   3505. http://dx.doi.org/10.1016/j.msec.2013.04.040
             Sci Eng C, 25(5–8): 664–668. http://dx.doi.org/10.1016/  60. Marom R, Shur I, Solomon R, et al., 2005, Characterization
             j.msec.2005.06.013
           50. Sterrer M, Berger T, Diwald O, et al., 2003, Energy transfer on   of adhesion and differentiation markers of osteogenic marrow
             the MgO surface, monitored by UV-induced H 2  chemisorption.   stromal cells. J Cell Physiol, 202(1): 41–48. http://dx.doi.
             J Am Chem Soc, 125(1): 195–199. http://dx.doi.org/10.1021/  org/10.1002/jcp.20109
             ja028059o                                         61. Wang F, Zhai D, Wu C, et al., 2016, Multifunctional
           51. Long T C, Saleh N, Tilton R D, et al., 2006, Titanium dioxide   mesoporous bioactive glass/upconversion nanoparticle
             (P25) produces reactive oxygen species in immortalized brain   nanocomposites with strong red emission to monitor drug
             microglia (BV2): Implications for nanoparticle neurotoxicity.   delivery and stimulate osteogenic differentiation of stem cells.
             Environ Sci Technol, 40(14): 4346–4352. http://dx.doi.  Nano Res, 9(4): 1193–1208. http://dx.doi.org/10.1007/s12274-
             org/10.1021/es060589n                               016-1015-z
           52. Xia T, Kovochich M, Brant J, et al., 2006, Comparison of the   62. Zhang J, Zhu Y, 2014, Synthesis and characterization of
             abilities of ambient and manufactured nanoparticles to induce   CeO 2 -incorporated mesoporous calcium-silicate materials.
             cellular toxicity according to an oxidative stress paradigm.   Microporous Mesoporous Mater, 197: 244–251. http://dx.doi.
             Nano Lett, 6(8): 1794–1807. http://dx.doi.org/10.1021/
                                                                 org/10.1016/j.micromeso.2014.06.018
             nl061025k
           53. Jin T, He Y, 2011, Antibacterial activities of magnesium oxide   63. Hoppe A, Guldal N S, Boccaccini A R, 2011, A re view of the
             (MgO) nanoparticles against foodborne pathogens. J Nanopart   biological response to ionic dissolution pro ducts from bioactive
             Res, 13(12): 6877–6885. http://dx.doi.org/10.1007/s11051-  glasses and glass-ceramics. Biomaterials, 32(11): 2757–2774.
             011-0595-5                                          http://dx.doi.org/10.1016/j.biomaterials.2011.01.004
           54. Yamamoto O, Sawai J, Kojima H, et al., 2002, Effect of   64. Yamniuk A P, Vogel H J, 2005, Calcium- and magnesium-
             mixing ratio on bactericidal action of MgO–CaO powders.   dependent interactions between calcium- and integrin-binding
             J Mater Sci Mater Med, 13(8): 789–792. http://dx.doi.  protein and the integrin αIIb cytoplasmic domain. Protein Sci,
             org/10.1023/A:1016179225955                         14(6): 1429–1437. http://dx.doi.org/10.1110/ps.041312805
           55. Jeevanandam P, Klabunde K, 2002, A study on adsorption   65. Zreiqat H, Howlett C, Zannettino A, et al., 2002, Mechanisms
             of surfactant molecules on magnesium oxide nanocrystals   of magnesium-stimulated adhesion of osteoblastic cells to
             prepared by an aerogel route. Langmuir, 18(13): 5309–5313.   commonly used orthopaedic implants. J Biomed Mater Res A,
             http://dx.doi.org/10.1021/la0200921                 62(2): 175–184. http://dx.doi.org/10.1002/jbm.10270
           56. He Y, Ingudam S, Reed S, et al., 2016, Study on the   66. Bouvard D, Pouwels J, De Franceschi N, et al., 2013, Integrin
             mechanism of antibacterial action of magnesium oxide   inactivators: Balancing cellular functions in vitro and in
             nanoparticles against foodborne pathogens. J Nanobiotechnol,
             14(1): 54. http://dx.doi.org/10.1186/s12951-016-0202-0  vivo. Nat Rev Mol Cell Biol, 14(7): 430–442. http://dx.doi.
                                                                 org/10.1038/nrm3599
           57. Salomao R, Bittencourt L, Pandolfelli V, 2007, A novel
             approach for magnesia hydration assessment in refractory   67. Bourboulia D, Stetler-Stevenson W G, 2010, Matrix me ta llo-
             castables.  Ceram Int, 33(5): 803–810. http://dx.doi.  proteinases (MMPs) and tissue inhibitors of metalloproteinases
             org/10.1016/j.ceramint.2006.01.004                  (TIMPs): Positive and negative regulators in tumor cell
           58. Mo L, Deng M, Tang M, et al., 2014, MgO expansive ce-  adhesion. Semin Cancer Biol, 20(3): 161–168. http://dx.doi.
             ment and concrete in China: Past, present and future.   org/10.1016/j.semcancer.2010.05.002





           14                          International Journal of Bioprinting (2018)–Volume 4, Issue 1
   70   71   72   73   74   75   76   77   78   79   80