Page 73 - IJB-4-1
P. 73
An nMgO containing scaffold: Antibacterial activity, degradation properties and cell responses
5. Londonkar R L, Madire Kattegouga U, Shivsharanappa K, et j.biomaterials.2005.10.003
al., 2013, Phytochemical screening and in vitro antimicrobial 16. De Silva R T, Mantilaka M M, Ratnayake S P, et al.,
activity of Typha angustifolia Linn leaves extract against 2017, Nano-MgO reinforced chitosan nanocomposites for
pathogenic gram negative micro organisms. J Pharm Res, high performance packaging applications with improved
6(2): 280–283. http://dx.doi.org/10.1016/j.jopr.2013.02.010 mechanical, thermal and barrier properties. Carbohydr Polym,
6. Trampuz A, Zimmerli W, 2006, Antimicrobial agents in 157: 739–747. http://dx.doi.org/10.1016/j.carbpol.2016.10.038
orthopaedic surgery. Drugs, 66(8): 1089–1106. http://dx.doi. 17. Zhao Y, Liu B, You C, et al., 2016, Effects of MgO whiskers
org/10.2165/00003495-200666080-00005 on mechanical properties and crystallization behavior of
7. Goodman S B, Yao Z, Keeney M, et al., 2013, The fu- PLLA/MgO composites. Mater Des, 89: 573–581. http://
ture of biologic coatings for orthopaedic implants. dx.doi.org/10.1016/j.matdes.2015.09.157
Biomaterials, 34(13): 3174–3183. http://dx.doi.org/10.1016/ 18. Haldorai Y, Shim J-J, 2014, An efficient removal of methyl
j.biomaterials.2013.01.074 orange dye from aqueous solution by adsorption onto chitosan/
8. Yang S, Zhang Y, Yu J, et al., 2014, Antibacterial and MgO composite: A novel reusable adsorbent. Appl Surf Sci,
mech anical properties of honeycomb ceramic materials 292: 447–453. http://dx.doi.org/10.1016/j.apsusc.2013.11.158
incorporated with silver and zinc. Mater Des, 59: 461–465. 19. Yamamoto O, Ohira T, Alvarez K, et al., 2010, Antibacterial
http://dx.doi.org/10.1016/j.matdes.2014.03.025 characteristics of CaCO 3 –MgO composites. Mater Sci
9. Yazdimamaghani M, Vashaee D, Assefa S, et al., 2014, Hybrid Eng B, 173(1–3): 208–212. http://dx.doi.org/10.1016/
macroporous gelatin/bioactive-glass/nanosilver scaffolds with j.mseb.2009.12.007
controlled degradation behavior and antimicrobial activity for 20. Ma F, Lu X, Wang Z, et al., 2011, Nanocomposites of poly(ʟ-
bone tissue engineering. J Biomed Nanotechnol, 10(6): 911– lactide) and surface modified magnesia nanoparticles:
931. http://dx.doi.org/10.1166/jbn.2014.1783 Fabrication, mechanical property and biodegradability. J
10. Sánchez-Salcedo S, Shruti S, Salinas A J, et al., 2014, In vitro Phys Chem Solids, 72(2): 111–116. http://dx.doi.org/10.1016/
antibacterial capacity and cytocompatibility of SiO 2 –CaO– j.jpcs.2010.11.008
P 2 O 5 meso-macroporous glass scaffolds enriched with ZnO. J 21. Feng P, Peng S, Wu P, et al., 2016, A space network structure
Mater Chem B, 2(30): 4836–4847. http://dx.doi.org/10.1039/ constructed by tetraneedlelike ZnO whiskers supporting boron
c4tb00403e nitride nanosheets to enhance comprehensive properties of
11. Vargas-Reus M A, Memarzadeh K, Huang J, et al., 2012, poly (ʟ-lacti acid) scaffolds. Sci Rep, 6: 33385. http://dx.doi.
Antimicrobial activity of nanoparticulate metal oxides against org/10.1038/srep33385
peri-implantitis pathogens. Int J Antimicrob Agents, 40(2): 22. Lee J M, Sing S L, Tan E Y S, et al., 2016, Bioprinting in
135–139. http://dx.doi.org/10.1016/j.ijantimicag.2012.04.012 cardiovascular tissue engineering: A review. Int J Bioprint,
12. Dizaj S M, Lotfipour F, Barzegar-Jalali M, et al., 2014, 2(2): 27–36. http://dx.doi.org/10.18063/IJB.2016.02.006
Antimicrobial activity of the metals and metal oxide 23. Murphy C, Kolan K, Li W, et al., 2017, 3D bioprinting of
nanoparticles. Mater Sci Eng C Mater Biol Appl, 44: 278–284. stem cells and polymer/bioactive glass composite scaffolds
http://dx.doi.org/10.1016/j.msec.2014.08.031 for bone tissue engineering. Int J Bioprint, 3(1): 54–64. http://
13. Li Y, Zhang W, Niu J, et al., 2012, Mechanism of dx.doi.org/10.18063/IJB.2017.01.005
photogenerated reactive oxygen species and correlation 24. Eshraghi S, Das S, 2010, Mechanical and microstructural
with the antibacterial properties of engineered metal-oxide properties of polycaprolactone scaffolds with 1-D, 2-D, and
nanoparticles. ACS Nano, 6(6): 5164–5173. http://dx.doi. 3-D orthogonally oriented porous architectures produced by
org/10.1021/nn300934k selective laser sintering. Acta Biomater, 6(7): 2467–2476.
14. Krishnamoorthy K, Moon J Y, Hyun H B, et al., 2012, http://dx.doi.org/10.1016/j.actbio.2010.02.002
Mechanistic investigation on the toxicity of MgO 25. Eshraghi S, Das S, 2012, Micromechanical finite-element
nanoparticles toward cancer cells. J Mater Chem, 22(47): modeling and experimental characterization of the
24610–24617. http://dx.doi.org/10.1039/c2jm35087d compressive mechanical properties of polycaprolactone–
15. Staiger M P, Pietak A M, Huadmai J, et al., 2006, Magnesium hydroxyapatite composite scaffolds prepared by selective laser
and its alloys as orthopedic biomaterials: A review. sintering for bone tissue engineering. Acta Biomater, 8(8):
Biomaterials, 27(9): 1728–1734. http://dx.doi.org/10.1016/ 3138–3143. http://dx.doi.org/10.1016/j.actbio.2012.04.022
12 International Journal of Bioprinting (2018)–Volume 4, Issue 1

