Page 73 - IJB-4-1
P. 73

An nMgO containing scaffold: Antibacterial activity, degradation properties and cell responses

           5.  Londonkar R L, Madire Kattegouga U, Shivsharanappa K, et   j.biomaterials.2005.10.003
             al., 2013, Phytochemical screening and in vitro antimicrobial   16. De Silva R T, Mantilaka M M, Ratnayake S P, et al.,
             activity of Typha angustifolia Linn leaves extract against   2017, Nano-MgO reinforced chitosan nanocomposites for
             pathogenic gram negative micro organisms. J Pharm Res,   high performance packaging applications with improved
             6(2): 280–283. http://dx.doi.org/10.1016/j.jopr.2013.02.010  mechanical, thermal and barrier properties. Carbohydr Polym,
           6.  Trampuz A, Zimmerli W, 2006, Antimicrobial agents in   157: 739–747. http://dx.doi.org/10.1016/j.carbpol.2016.10.038
             orthopaedic surgery. Drugs, 66(8): 1089–1106. http://dx.doi.  17. Zhao Y, Liu B, You C, et al., 2016, Effects of MgO whiskers
             org/10.2165/00003495-200666080-00005                on mechanical properties and crystallization behavior of
           7.  Goodman S B, Yao Z, Keeney M, et al., 2013, The fu-  PLLA/MgO composites. Mater Des, 89: 573–581. http://
             ture of biologic coatings for orthopaedic implants.   dx.doi.org/10.1016/j.matdes.2015.09.157
             Biomaterials, 34(13): 3174–3183. http://dx.doi.org/10.1016/  18. Haldorai Y, Shim J-J, 2014, An efficient removal of methyl
             j.biomaterials.2013.01.074                          orange dye from aqueous solution by adsorption onto chitosan/
           8.  Yang S, Zhang Y, Yu J, et al., 2014, Antibacterial and   MgO composite: A novel reusable adsorbent. Appl Surf Sci,
             mech anical properties of honeycomb ceramic materials   292: 447–453. http://dx.doi.org/10.1016/j.apsusc.2013.11.158
             incorporated with silver and zinc. Mater Des, 59: 461–465.   19. Yamamoto O, Ohira T, Alvarez K, et al., 2010, Antibacterial
             http://dx.doi.org/10.1016/j.matdes.2014.03.025      characteristics of CaCO 3 –MgO composites. Mater Sci
           9.  Yazdimamaghani M, Vashaee D, Assefa S, et al., 2014, Hybrid   Eng B, 173(1–3): 208–212. http://dx.doi.org/10.1016/
             macroporous gelatin/bioactive-glass/nanosilver scaffolds with   j.mseb.2009.12.007
             controlled degradation behavior and antimicrobial activity for   20. Ma F, Lu X, Wang Z, et al., 2011, Nanocomposites of poly(ʟ-
             bone tissue engineering. J Biomed Nanotechnol, 10(6): 911–  lactide) and surface modified magnesia nanoparticles:
             931. http://dx.doi.org/10.1166/jbn.2014.1783        Fabrication, mechanical property and biodegradability. J
           10. Sánchez-Salcedo S, Shruti S, Salinas A J, et al., 2014, In vitro   Phys Chem Solids, 72(2): 111–116. http://dx.doi.org/10.1016/
             antibacterial capacity and cytocompatibility of SiO 2 –CaO–  j.jpcs.2010.11.008
             P 2 O 5  meso-macroporous glass scaffolds enriched with ZnO. J   21. Feng P, Peng S, Wu P, et al., 2016, A space network structure
             Mater Chem B, 2(30): 4836–4847. http://dx.doi.org/10.1039/  constructed by tetraneedlelike ZnO whiskers supporting boron
             c4tb00403e                                          nitride nanosheets to enhance comprehensive properties of
           11. Vargas-Reus M A, Memarzadeh K, Huang J, et al., 2012,   poly (ʟ-lacti acid) scaffolds. Sci Rep, 6: 33385. http://dx.doi.
             Antimicrobial activity of nanoparticulate metal oxides against   org/10.1038/srep33385
             peri-implantitis pathogens. Int J Antimicrob Agents, 40(2):   22. Lee J M, Sing S L, Tan E Y S, et al., 2016, Bioprinting in
             135–139. http://dx.doi.org/10.1016/j.ijantimicag.2012.04.012  cardiovascular tissue engineering: A review. Int J Bioprint,
           12. Dizaj S M, Lotfipour F, Barzegar-Jalali M, et al., 2014,   2(2): 27–36. http://dx.doi.org/10.18063/IJB.2016.02.006
             Antimicrobial activity of the metals and metal oxide   23. Murphy C, Kolan K, Li W, et al., 2017, 3D bioprinting of
             nanoparticles. Mater Sci Eng C Mater Biol Appl, 44: 278–284.   stem cells and polymer/bioactive glass composite scaffolds
             http://dx.doi.org/10.1016/j.msec.2014.08.031        for bone tissue engineering. Int J Bioprint, 3(1): 54–64. http://
           13. Li Y, Zhang  W, Niu J, et al., 2012, Mechanism of   dx.doi.org/10.18063/IJB.2017.01.005
             photogenerated reactive oxygen species and correlation   24. Eshraghi S, Das S, 2010, Mechanical and microstructural
             with the antibacterial properties of engineered metal-oxide   properties of polycaprolactone scaffolds with 1-D, 2-D, and
             nanoparticles. ACS Nano, 6(6): 5164–5173. http://dx.doi.  3-D orthogonally oriented porous architectures produced by
             org/10.1021/nn300934k                               selective laser sintering. Acta Biomater, 6(7): 2467–2476.
           14. Krishnamoorthy K, Moon J Y, Hyun H B, et al., 2012,   http://dx.doi.org/10.1016/j.actbio.2010.02.002
             Mechanistic investigation on the toxicity of MgO   25. Eshraghi S, Das S, 2012, Micromechanical finite-element
             nanoparticles toward cancer cells. J Mater Chem, 22(47):   modeling and experimental characterization of the
             24610–24617. http://dx.doi.org/10.1039/c2jm35087d   compressive mechanical properties of polycaprolactone–
           15. Staiger M P, Pietak A M, Huadmai J, et al., 2006, Magnesium   hydroxyapatite composite scaffolds prepared by selective laser
             and its alloys as orthopedic biomaterials: A review.   sintering for bone tissue engineering. Acta Biomater, 8(8):
             Biomaterials, 27(9): 1728–1734. http://dx.doi.org/10.1016/  3138–3143. http://dx.doi.org/10.1016/j.actbio.2012.04.022

           12                          International Journal of Bioprinting (2018)–Volume 4, Issue 1
   68   69   70   71   72   73   74   75   76   77   78