Page 105 - IJB-4-2
P. 105

Han X, et al.

                                                                  689–699. https://doi.org/10.1016/j.tibtech.2016.04.006
                                                               3.   Rose FR, Oreffo RO, 2002, Bone Tissue Engineering: Hope
                                                                  vs Hype. Biochem Biophys Res Commun, 292(1): 1–7.
                                                                  https://doi.org/10.1006/bbrc.2002.6519
                                                               4.   Radisc M, Yang L, Boublik J, et al., 2004, Medium perfusion
                                                                  enables engineering of compact and contractile cardiac
                                                                  tissue. Am J Physiol Heart Circ Physiol, 286(2): H507–
                                                                  H516. https://doi.org/10.1152/ajpheart.00171.2003
                                                               5.   Hoch E, Tovar G, Borchers K, 2014, Bioprinting of artificial
                                                                  blood vessels: current approaches towards a demanding
                                                                  goal. Eur J Cardiothorac Surg, 46(5): 767–778. https://doi.
                                                                  org/10.1093/ejcts/ezu242
                                                               6.   Kannan RY, Salacinski HJ, Sales K, et al., 2005, The
           Figure 18. The dead cell rate (%) after seven days with no   roles of tissue engineering and vascularisation in the
           embedded tube, single tube and branched tube (sample size for
           each is 3).                                            development of micro-vascular networks: A review.
                                                                  Biomaterials, 26(14): 1857–1875. https://doi.org/10.1016/
           and have potentials to be further developed. Plan of   j.biomaterials.2004.07.006
           the future work following this paper will be, 1) more   7.   Patrick Jr CW, 2000, Adipose tissue engineering: The future
           in vitro experiments need to be carried out in order to   of breast and soft tissue reconstruction following tumor
           validate the design; 2) in the current skin model, they   resection. Semin Surg Oncol, vol.19(3): 302–311.
           surrounding hydrogel is biodegradable which allowing
           remodelling in vivo. Currently, the material (BLI) used   8.   Kamel RA, Ong JF, Eriksson E, et al., 2013, Tissue
           to manufacture the vascular network is none or very    Engineering of Skin. J Am Coll Surg, 217(3): 533–555.
           slow degradable according to the degradation analysis.   https://doi.org/10.1016/j.jamcollsurg.2013.03.027
           The biodegradable polymer will be used to manufacture   9.   Zdrahala R, 1996, Small caliber vascular grafts. Part II:
           the vascular network allowing remodelling; 3) top skin   Polyurethanes revisited. J Biomater Appl, 11(1): 37–61.
           layers (epidermis and dermis) will be added to the skin   https://doi.org/10.1177/088532829601100102
           model as complete skin integration.
                                                               10.  Ng WL, Lee JM, Yeong WY, et al., 2017, Microvalve-based
           6. Acknowledgement                                     bioprinting – process, bio-inks and applications. Biomater
           This work is part of the project ArtiVasc 3D (http://www.  Sci, 5(4): 632. https://doi.org/10.1039/c6bm00861e
           artivasc.eu/). It is financially supported by the European   11.  Melchels FPW, Domingos MAN, Klein TJ, et al., 2012,
           Union’s Seventh Framework Programme (FP/2007-2013)     Additive manufacturing of tissues and organs. Prog
           under grant agreement No. 263416 (ArtiVasc 3D). The    Polym Sci, 37(8): 1079–1104. http://dx.doi.org/10.1016/
           authors thank Dr Kirsten Borchers (Fraunhofer IGB,
           Germany) for providing methacryl-modified gelatin,     j.progpolymsci.2011.11.007
           and Dr Birgit Huber (formerly University of Stuttgart,   12.  Miller JS, Stevens KR, Yang MT, et al., 2012, Rapid casting
           Germany), Dr Petra Kluger (formerly Fraunhofer IGB,    of patterned vascular networks for perfusable engineered
           Germany) and Ivan Calderon (Unitechnologies SA,        three-dimensional tissues. Nat Mater, 11(9): 768–774.
           Switzerland) for design and production of the perfusion   https://doi.org/10.1038/nmat3357
           bioreactor.
                                                               13.  Kolesky D, Truby R, Gladman S,  et al., 2014, 3D
           References                                             Bioprinting of Vascularized, Heterogeneous Cell-Laden
           1.   Ng WL, Qi JTZ, Yeong WY, et al., 2018, Proof-of-concept:   Tissue Constructs. Adv Mater, 26(19): 3124–3130. https://
               3D bioprinting of pigmented human skin constructs.   doi.org/10.1002/adma.201305506
               Biofabrication, 10(2): 025005. https://doi.org/10.1088/1758-  14.  Wu W, DeConinck A, Lewis J, 2011, Omnidirectional
               5090/aa9e1e                                        Printing of 3D Microvascular Networks. Adv Mater, 23(24):
           2.   NgWL, Wang S, Yeong WY, et al., 2016, Skin Bioprinting:   H178–H183. https://doi.org/10.1002/adma.201004625
               Impending Reality or Fantasy? Trends Biotechnol, 34(9):   15.  Kucukgul C, Ozler B, Karakas HE, et al., 2013, 3D hybrid
                                                                  bioprinting of macrovascular structures. Procedia Eng, 59:

                                       International Journal of Bioprinting (2018)–Volume 4, Issue 2        15
   100   101   102   103   104   105   106   107   108   109   110