Page 106 - IJB-4-2
P. 106

Optimized vascular network by stereolithography for tissue engineered skin

               183–192. https://doi.org/10.1016/j.proeng.2013.05.109  org/10.1016/j.compbiomed.2015.06.009
           16.  Wegener M, Burkhard E, Novosel E, et al., 2012, Soft   28.  Edelman ER, 1999, Vascular Tissue Engineering: Designer
               polymers for building up small and smallest blood supplying   Arteries. Circ Res, 85(12): 1115–1117.
               system by stereolithography. J Funct Biomater, 3(2): 257–  29.  Friedman MH, Deters OJ, Mark FF, et al., 1983, Arterial
               268. https://doi.org/10.3390/jfb3020257            geometry affects hemodynamics: a potential risk factor for
           17.  Hinton T, Jallerat Q, Palchesko R, 2015, Three-dimensional   atherogenesis. Atherosclerosis, 46(2): 225–231.
               printing of complex biological structures by freeform   30.  Peng CN, Wang XQ, Xian ZC, et al., 2016, The Impact of
               reversible embedding of suspended hydrogels. Sci Adv, 1(9):   the Geometric Characteristics on the Hemodynamics in
               e1500758. https://doi.org/10.1126/sciadv.1500758   the Stenotic Coronary Artery. PLoS One, 11(6): e0157490.
           18.  Han X, Bibb R, Harris R, 2015, Design of bifurcation   https://dx.doi.org/10.1371%2Fjournal.pone.0157490
               junctions in  artificial vascular  vessels additively   31.  Rabinovitz RS, Levesque MJ, Nerem RM, 1987, Effects
               manufactured for skin tissue engineering. J Vis Lang Comput,   of branching angle in the left main coronary bifurcation.
               28: 238-249. https://doi.org/10.1016/j.jvlc.2014.12.005  Circulation, IV-387.
           19.  Han X, Bibb R, Harris R, 2016, Engineering Design of   32.  Murray C, 1926, The physiological principle of minimum
               Artificial Vascular Junctions for 3D Printing. Biofabrication,   work. I. the vascular system and the cost of the blood
               8(2): 025018. https://doi.org/10.1088/1758-5090/8/2/025018  volume. Proc Natl Acad Sci USA, 12(3): 207–214.
           20.  Kohler U, Marshall I, Robertson MB, et al., 2001, MRI   33.  Murray C, 1926, The physiological principle of minimum
               measurement of wall shear stress vectors in bifurcation   work: II Oxygen exchange in capillaries. Proc Natl Acad Sci
               models and comparison with CFD predictions. J Magn   USA, 12(5): 299–304.
               Reson Imaging, 14(5): 563–573.                  34.  Zamir M, 1976, Optimality principles in arterial branching.
           21.  Marshall I, Zhao S, Papathanasopoulou P, et al., 2004, MRI   J Theor Biol, 62(1): 227–251. https://doi.org/10.1016/0022-
               and CFD studies of pulsatile flow in healthy and stenosed   5193(76)90058-8
               carotid bifurcation models. J Biomech, 37(5): 679–687.   35.  Schreiner  W, Karch R, Neumann M, et al., 2006, Optimized
               https://doi.org/10.1016/j.jbiomech.2003.09.032     arterial trees supplying hollow organs.  Med Eng Phys, 28(5):
           22.  Ravensbergen J, Krijger J, Hillen B, et al., 1995, Merging   416–429. https://doi.org/10.1016/j.medengphy.2005.07.019
               flows in an arterial confluence: the vertebra-basilar junction.   36.  Kretoeski M, Rolland Y, Bezy-Wendling J, et al., 2003,
               J Fluid Mech, 304: 119–141. https://doi.org/10.1017/  Fast algorithm for 3-D vascular tree modeling. Computer
               S0022112095004368                                  Methods and Programs in Biomedicine, 70(2): 129–136.
           23.  Ravensbergen J, Krijger JKB, Verdaasdonk AL, et al., 1997,   37.  Kassab GS, Rider CA, Tang NJ, et al., 1993, Morphometry of
               The influence of the blunting of the apex on the flow in a   pig coronary arterial trees. Am J Physiol, 265(1 Pt 2): H350–
               Vertebro-Basilar junction model. J Biomech Eng, 119(2):   365. https://doi.org/10.1152/ajpheart.1993.265.1.H350
               195–205.                                        38.  Kamiya A, Togawa T, 1972, Optimal branching structure of
           24.  Papaioannou TG, Stefanadis C, 2004, Vascular wall shear   the vascular tree. Bull Math Biophys, 34(4): 431–438.
               stress: Basic principles and methods. Hellenic J Cardiol,   39.  Regittnig W, Ellmerer M, Fauler G, et al., 2003, Assessment
               46(1): 9–15.                                       of transcapillary glucose exchange in human skeletal muscle
           25.  Caro CG, 2009, Discovery of the role of wall shear in   and adipose tissue. Am J Physiol Endocrinol Metab, 285(2):
               atherosclerosis.  Arterioscler Thromb Vasc Biol, 29(2): 158–  E241–E251. https://doi.org/10.1152/ajpendo.00351.2002
               161. https://doi.org/10.1161/ATVBAHA.108.166736  40.  Khamassi J, Bierwisch C, Pelz P, 2016, Geometry
           26.  Coppola G, Caro CG, 2009, Arterial geometry, flow pattern,   optimization of branchings in vascular networks. Phys Rev E,
               wall shear and mass transport: Potential physiological   93(6): 062408. https://doi.org/10.1103/PhysRevE.93.062408
               significance. J R Soc Interface, 6(35): 1–10. https://doi.  41.  Gebhardt A, 2013, Generative Fertigungsverfahren:
               org/10.1098/rsif.2008.0417                         Additive Manufacturing und 3D Drucken für Prototyping–
           27.  Liu G, Wu J, Ghista DNH, et al., 2015, Hemodynamic   Tooling–Produktion. Carl Hanser Verlag, München.
               characterization of transient blood flow in right coronary   Available from: https://www.hanser-elibrary.com/doi/
               arteries with varying curvature and side-branch bifurcation   pdf/10.3139/9783446436527.fm
               angles.  Comput Biol Med, 64: 117–126. https://doi.  42.  Gibson  I,  Rosen  DW,  Stucker B,  2010, Additive

           16                          International Journal of Bioprinting (2018)–Volume 4, Issue 2
   101   102   103   104   105   106   107   108   109   110   111