Page 124 - IJB-4-2
P. 124
Shuai C, et al.
anabolic response of osteoblast to low-intensity pulsed 92. Li J, Rose E, Frances D, et al., 2012, Effect of oscillating
ultrasound. J Bone Miner Res, 18(2): 360–369. https://doi. fluid flow stimulation on osteocyte mRNA expression.
org/10.1359/jbmr.2003.18.2.360 J Biomech, 45(2): 247–251. https://doi.org/10.1016/
82. Sant'Anna E F, Leven R M, Virdi A S, et al., 2005, Effect j.jbiomech.2011.10.037
of low intensity pulsed ultrasound and BMP-2 on rat bone 93. Liu X, Zhang X, Lee I, 2010, A quantitative study on
marrow stromal cell gene expression. J Orthop Res, 23(3): morphological responses of osteoblastic cells to fluid shear
646–652. https://doi.org/10.1016/j.orthres.2004.09.007 stress. Acta Biochim Biophys Sin (Shanghai), 42(3): 195–
83. Yang R S, Lin W L, Chen Y Z, et al., 2005, Regulation 201. https://doi.org/10.1093/abbs/ gmq004
by ultrasound treatment on the integrin expression and 94. Li P, Ma Y C, Shen H L, et al., 2012, Cytoskeletal
differentiation of osteoblasts. Bone, 36(2): 276–283. https:// reorganization mediates fluid shear stress-induced ERK5
doi.org/10.1016/j.bone.2004.10.009 activation in osteoblastic cells. Cell Biol Int, 36(3): 229–236.
84. Sun J S, Hong R C, Chang W H, et al., 2001, In vitro effects https://doi.org/10.1042/CBI20110113
of low-intensity ultrasound stimulation on the bone cells. J 95. Stiehler M, Bünger C, Baatrup A, et al., 2009, Effect of
Biomed Mater Res, 57(3): 449–456. dynamic 3-D culture on proliferation, distribution, and
85. Korstjens C M, Nolte P A, Burger E H, et al., 2004, osteogenic differentiation of human mesenchymal stem
Stimulation of bone cell differentiation by low-intensity cell. J Biomed Mater Res A, 89(1): 96–107. https://doi.
ultrasound––a histomorphometric in vitro study. J org/10.1002/jbm.a.31967
Orthop Res, 22(3): 495–500. https://doi.org/10.1016/ 96. Chen G, Rui X, Chang Z, et al., 2017, Responses of MSCs to
j.orthres.2003.09.011 3D scaffold matrix mechanical properties under oscillatory
86. Xuan Z, Castro N J, Wei Z, et al., 2016, Improved human perfusion culture. ACS Appl Mater Interfaces, 9(2): 1207–
bone marrow mesenchymal stem cell osteogenesis in 1218. https://doi.org/10.1021/acsami.6b10745
3D bioprinted tissue scaffolds with low intensity pulsed 97. Shah F A, Snis A, Matic A, et al., 2016, 3D printed
ultrasound stimulation. Sci Rep, 6: 32876. https://doi. Ti6Al4V implant surface promotes bone maturation and
org/10.1038/srep32876 retains a higher density of less aged osteocytes at the bone-
87. Aliabouzar M, Lee S J, Zhou X, et al., 2018, Effects of implant interface. Acta Biomater, 30: 357–367. https://doi.
scaffold microstructure and low intensity pulsed ultrasound org/10.1016/j.actbio.2015.11.013
on chondrogenic differentiation of human mesenchymal 98. Lee J W, Kang K S, Lee S H, et al., 2011, Bone regeneration
stem cells. Biotechnol Bioeng, 115(2): 495–506. https://doi. using a microstereolithography-produced customized
org/10.1002/bit.26480 poly(propylene fumarate)/diethyl fumarate photopolymer 3D
88. Tang L L, Wang Y L, Pan J, et al., 2004, The effect of scaffold incorporating BMP-2 loaded PLGA microspheres.
step-wise increased stretching on rat calvarial osteoblast Biomaterials, 32(3): 744–752. https://doi.org/10.1016/
collagen production. J Biomech, 37(1): 157–161. https://doi. j.biomaterials.2010.09.035
org/10.1016/S0021-9290(03)00237-9 99. Peng F, Yu X, Wei M, 2011, In vitro cell performance on
89. Jagodzinski M, Drescher M, Zeichen J, et al., 2004, Effects hydroxyapatite particles/poly(-lactic acid) nanofibrous
of cyclic longitudinal mechanical strain and dexamethasone scaffolds with an excellent particle along nanofiber
on osteogenic differentiation of human bone marrow stromal orientation. Acta Biomater, 7(6): 2585–2592. https://doi.
cells. Eur Cell Mater, 7: 35–41. https://doi.org/10.22203/ org/10.1016/j.actbio.2011.02.021
eCM 100. Perez R A, El-Fiqi A, Park J H, et al., 2014, Therapeutic
90. Kearney E M, Farrell E, Prendergast P J, et al., 2010, Tensile bioactive microcarriers: Co-delivery of growth factors and
strain as a regulator of mesenchymal stem cell osteogenesis. stem cells for bone tissue engineering. Acta Biomater, 10(1):
Ann Biomed Eng, 38(5): 1767–1779. https://doi.org/10.1007/ 520–530. https://doi.org/10.1016/j.actbio.2013.09.042
s10439-010-9979-4 101. Seyednejad H, Gawlitta D, Kuiper R V, et al., 2012, In
91. Sanchez C, Pesesse L, Gabay O, et al., 2012, Regulation vivo biocompatibility and biodegradation of 3D-printed
of subchondral bone osteoblast metabolism by cyclic porous scaffolds based on a hydroxyl-functionalized poly(ε-
compression. Arthritis Rheum, 64(4): 1193–1203. https://doi. caprolactone). Biomaterials, 33(17): 4309–4318. https://doi.
org/10.1002/art.33445 org/10.1016/j.biomaterials.2012.03.002
International Journal of Bioprinting (2018)–Volume 4, Issue 2 17

