Page 124 - IJB-4-2
P. 124

Shuai C, et al.

               anabolic response of osteoblast to low-intensity pulsed   92.  Li J, Rose E, Frances D, et al., 2012, Effect of oscillating
               ultrasound. J Bone Miner Res, 18(2): 360–369. https://doi.  fluid flow stimulation on osteocyte mRNA expression.
               org/10.1359/jbmr.2003.18.2.360                     J Biomech, 45(2): 247–251. https://doi.org/10.1016/
           82.  Sant'Anna E F, Leven R M, Virdi A S, et al., 2005, Effect   j.jbiomech.2011.10.037
               of low intensity pulsed ultrasound and BMP-2 on rat bone   93.  Liu X, Zhang X, Lee I, 2010, A quantitative study on
               marrow stromal cell gene expression. J Orthop Res, 23(3):   morphological responses of osteoblastic cells to fluid shear
               646–652. https://doi.org/10.1016/j.orthres.2004.09.007  stress. Acta Biochim Biophys Sin (Shanghai), 42(3): 195–
           83.  Yang R S, Lin W L, Chen Y Z, et al., 2005, Regulation   201. https://doi.org/10.1093/abbs/ gmq004
               by ultrasound treatment on the integrin expression and   94.  Li P, Ma Y C, Shen H L,  et al., 2012, Cytoskeletal
               differentiation of osteoblasts. Bone, 36(2): 276–283. https://  reorganization mediates fluid shear stress-induced ERK5
               doi.org/10.1016/j.bone.2004.10.009                 activation in osteoblastic cells. Cell Biol Int, 36(3): 229–236.
           84.  Sun J S, Hong R C, Chang W H, et al., 2001, In vitro effects   https://doi.org/10.1042/CBI20110113
               of low-intensity ultrasound stimulation on the bone cells. J   95.  Stiehler M, Bünger C, Baatrup A, et al., 2009, Effect of
               Biomed Mater Res, 57(3): 449–456.                  dynamic 3-D culture on proliferation, distribution, and
           85.  Korstjens C M, Nolte P A, Burger E H, et al., 2004,   osteogenic differentiation of human mesenchymal stem
               Stimulation of bone cell differentiation by low-intensity   cell. J Biomed Mater Res A, 89(1): 96–107. https://doi.
               ultrasound––a histomorphometric  in vitro study.  J   org/10.1002/jbm.a.31967
               Orthop Res, 22(3): 495–500. https://doi.org/10.1016/  96.  Chen G, Rui X, Chang Z, et al., 2017, Responses of MSCs to
               j.orthres.2003.09.011                              3D scaffold matrix mechanical properties under oscillatory
           86.  Xuan Z, Castro N J, Wei Z, et al., 2016, Improved human   perfusion culture. ACS Appl Mater Interfaces, 9(2): 1207–
               bone marrow mesenchymal stem cell osteogenesis in   1218. https://doi.org/10.1021/acsami.6b10745
               3D bioprinted tissue scaffolds with low intensity pulsed   97.  Shah F A, Snis A, Matic A, et al., 2016, 3D printed
               ultrasound stimulation. Sci Rep, 6: 32876. https://doi.  Ti6Al4V implant surface promotes bone maturation and
               org/10.1038/srep32876                              retains a higher density of less aged osteocytes at the bone-
           87.  Aliabouzar M, Lee S J, Zhou X, et al., 2018, Effects of   implant interface. Acta Biomater, 30: 357–367. https://doi.
               scaffold microstructure and low intensity pulsed ultrasound   org/10.1016/j.actbio.2015.11.013
               on chondrogenic differentiation of human mesenchymal   98.  Lee J W, Kang K S, Lee S H, et al., 2011, Bone regeneration
               stem cells. Biotechnol Bioeng, 115(2): 495–506. https://doi.  using a microstereolithography-produced customized
               org/10.1002/bit.26480                              poly(propylene fumarate)/diethyl fumarate photopolymer 3D
           88.  Tang L L, Wang Y L, Pan J, et al., 2004, The effect of   scaffold incorporating BMP-2 loaded PLGA microspheres.
               step-wise increased stretching on rat calvarial osteoblast   Biomaterials, 32(3): 744–752. https://doi.org/10.1016/
               collagen production. J Biomech, 37(1): 157–161. https://doi.  j.biomaterials.2010.09.035
               org/10.1016/S0021-9290(03)00237-9               99.  Peng F, Yu X, Wei M, 2011, In vitro cell performance on
           89.  Jagodzinski M, Drescher M, Zeichen J, et al., 2004, Effects   hydroxyapatite particles/poly(-lactic acid) nanofibrous
               of cyclic longitudinal mechanical strain and dexamethasone   scaffolds with an excellent particle along nanofiber
               on osteogenic differentiation of human bone marrow stromal   orientation. Acta Biomater, 7(6): 2585–2592. https://doi.
               cells. Eur Cell Mater, 7: 35–41. https://doi.org/10.22203/  org/10.1016/j.actbio.2011.02.021
               eCM                                             100.  Perez R A, El-Fiqi A, Park J H, et al., 2014, Therapeutic
           90.  Kearney E M, Farrell E, Prendergast P J, et al., 2010, Tensile   bioactive microcarriers: Co-delivery of growth factors and
               strain as a regulator of mesenchymal stem cell osteogenesis.   stem cells for bone tissue engineering. Acta Biomater, 10(1):
               Ann Biomed Eng, 38(5): 1767–1779. https://doi.org/10.1007/  520–530. https://doi.org/10.1016/j.actbio.2013.09.042
               s10439-010-9979-4                               101.  Seyednejad H, Gawlitta D, Kuiper R V, et al., 2012, In
           91.  Sanchez C, Pesesse L, Gabay O, et al., 2012, Regulation   vivo biocompatibility and biodegradation of 3D-printed
               of subchondral bone osteoblast metabolism by cyclic   porous scaffolds based on a hydroxyl-functionalized poly(ε-
               compression. Arthritis Rheum, 64(4): 1193–1203. https://doi.  caprolactone). Biomaterials, 33(17): 4309–4318. https://doi.
               org/10.1002/art.33445                              org/10.1016/j.biomaterials.2012.03.002

                                       International Journal of Bioprinting (2018)–Volume 4, Issue 2        17
   119   120   121   122   123   124   125   126   127   128   129