Page 125 - IJB-4-2
P. 125
Physical stimulations and their osteogenesis-inducing mechanisms
102. Yang W F, Long L, Wang R, et al., 2018, Surface-modified fibular osteotomies. J Orthop Res, 23(5): 1035–1046. https://
hydroxyapatite nanoparticle-reinforced polylactides for doi.org/10.1016/j.orthres.2005.03.015
three-dimensional printed bone tissue engineering scaffolds. 113. Friedenberg Z B, Harlow M C, Brighton C T, 1971, Healing
J Biomed Nanotechnol, 14(2): 294–303. https://doi. of nonunion of the medial malleolus by means of direct
org/10.1166/jbn.2018.2495 current: A case report. J Trauma, 11(10): 883–885.
103. Wang H, Zhao S, Zhou J, et al., 2015, Biocompatibility and 114. Paterson D C, Lewis G N, Cass C A, 1980, Treatment of
osteogenic capacity of borosilicate bioactive glass scaffolds delayed union and nonunion with an implanted direct current
loaded with Fe 3 O 4 magnetic nanoparticles. J Mater Chem B, stimulator. Clin Orthop Relat Res, 148: 117–128.
3(21): 4377–4387. https://doi.org/10.1039/C5TB00062A 115. Nolte P A, Van d K A, Patka P, et al., 2001, Low-intensity
104. He L, Zhao P, Han Q, et al., 2013, Surface modification of pulsed ultrasound in the treatment of nonunions. J Trauma,
poly- l -lactic acid fibrous scaffolds by a molecular-designed 51(4): 693–702.
multi-walled carbon nanotube multilayer for enhancing 116. Yan Q C, Tomita N, Ikada Y, 1998, Effects of static magnetic
cell interactions. Carbon, 56(56): 224–234. http://dx.doi. field on bone formation of rat femurs. Med Eng Phys, 20(6):
org/10.1016/j.carbon.2013.01.025 397–402. https://doi.org/10.1016/S1350-4533(98)00051-4
105. Wu C, Xia L, Han P, et al., 2015, Graphene-oxide-modified 117. Xu S, Tomita N, Ohata R, et al., 2001, Static magnetic field
β-tricalcium phosphate bioceramics stimulate in vitro and effects on bone formation of rats with an ischemic bone
in vivo osteogenesis. Carbon, 93: 116–129. https://doi. model. Biomed Mater Eng, 11(3): 257–263.
org/10.1016/j.carbon.2015.04.048 118. Xu S, Okano H, Tomita N, et al., 2011, Recovery effects of
106. Shuai C, Guo W, Wu P, et al., 2018, A graphene oxide- a 180 mT static magnetic field on bone mineral density of
Ag co-dispersing nanosystem: Dual synergistic effects on osteoporotic lumbar vertebrae in ovariectomized rats. Evid
antibacterial activities and mechanical properties of poly- Based Complement Alternat Med, 2011(4136): 1–8. https://
mer scaffolds. Chem Eng J, 347:322–333. https://doi. doi.org/10.1155/2011/620984
org/10.1016/j.cej.2018.04.092 119. Shen W W, Zhao J H, 2010, Pulsed electromagnetic fields
107. Zhang J, Zhao S, Zhu M, et al., 2014, 3D-printed magnetic stimulation affects BMD and local factor production of rats
Fe 3 O 4 /MBG/PCL composite scaffolds with multifunctionality with disuse osteoporosis. Bioelectromagnetics, 31(2): 113–
of bone regeneration, local anticancer drug delivery and 119. https://doi.org/10.1002/bem.20535
hyperthermia. J Mater Chem B, 2(43): 7583–7595. https:// 120. Taniguchi N, Kanai S, Kawamoto M, et al., 2004, Study
doi.org/10.1039/C4TB01063A on application of static magnetic field for adjuvant arthritis
108. Arjmand M, Ardeshirylajimi A, Maghsoudi H, et al., 2017, rats. Evid Based Complement Alternat Med, 1(2): 187–191.
Osteogenic differentiation potential of mesenchymal stem https://doi.org/10.1093/ecam/neh024
cells cultured on nanofibrous scaffold improved in the 121. Taniguchi N, Kanai S, 2007, Efficacy of static magnetic
presence of pulsed electromagnetic field. J Cell Physiol, field for locomotor activity of experimental osteopenia. Evid
233(2): 1061–1070. https://doi.org/10.1002/jcp.25962 Based Complement Alternat Med, 4(1): 99–105. https://doi.
109. Gao C, Peng S, Feng P, et al., 2017, Bone biomaterials and org/10.1093/ecam/nel067
interactions with stem cells. Bone Res, 5: 17059. https://doi. 122. Puricelli E, Ulbrich L M, Ponzoni D, et al., 2006, Histo-
org/10.1038/boneres.2017.59 logical analysis of the effects of a static magnetic field on
110. Gao C, Feng P, Peng S, et al., 2017, Carbon nanotubes, bone healing process in rat femurs. Head Face Med, 2: 43.
graphene and boron nitride nanotubes reinforced bioactive https://doi.org/10.1186/1746-160X-2-43
ceramics for bone repair. Acta Biomater, 61: 1–20. https:// 123. Puricelli E, Dutra N B, Ponzoni D, 2009, Histological
doi.org/10.1016/j.actbio.2017.05.020 evaluation of the influence of magnetic field application in
111. Sun S, Titushkin I, Cho M, 2006, Regulation of mesenchymal autogenous bone grafts in rats. Head Face Med, 5: 1. https://
stem cell adhesion and orientation in 3D collagen scaffold doi.org/10.1186/1746-160X-5-1
by electrical stimulus. Bioelectrochemistry, 69(2): 133–141. 124. Leesungbok R, Ahn S J, Lee S W, et al., 2013, The effects
https://doi.org/10.1016/j.bioelechem.2005.11.007 of a static magnetic field on bone formation around a
112. Midura R J, Ibiwoye M O, Powell K A, et al., 2005, Pulsed sandblasted, large-grit, acid-etched-treated titanium implant.
electromagnetic field treatments enhance the healing of J Oral Implantol, 39(S1): 248–255.
18 International Journal of Bioprinting (2018)–Volume 4, Issue 2

