Page 125 - IJB-4-2
P. 125

Physical stimulations and their osteogenesis-inducing mechanisms

           102.  Yang W F, Long L, Wang R, et al., 2018, Surface-modified   fibular osteotomies. J Orthop Res, 23(5): 1035–1046. https://
               hydroxyapatite nanoparticle-reinforced polylactides for   doi.org/10.1016/j.orthres.2005.03.015
               three-dimensional printed bone tissue engineering scaffolds.   113.  Friedenberg Z B, Harlow M C, Brighton C T, 1971, Healing
               J Biomed Nanotechnol, 14(2): 294–303. https://doi.  of nonunion of the medial malleolus by means of direct
               org/10.1166/jbn.2018.2495                          current: A case report. J Trauma, 11(10): 883–885.
           103.  Wang H, Zhao S, Zhou J, et al., 2015, Biocompatibility and   114.  Paterson D C, Lewis G N, Cass C A, 1980, Treatment of
               osteogenic capacity of borosilicate bioactive glass scaffolds   delayed union and nonunion with an implanted direct current
               loaded with Fe 3 O 4  magnetic nanoparticles. J Mater Chem B,   stimulator. Clin Orthop Relat Res, 148: 117–128.
               3(21): 4377–4387. https://doi.org/10.1039/C5TB00062A  115.  Nolte P A, Van d K A, Patka P, et al., 2001, Low-intensity
           104.  He L, Zhao P, Han Q, et al., 2013, Surface modification of   pulsed ultrasound in the treatment of nonunions. J Trauma,
               poly- l -lactic acid fibrous scaffolds by a molecular-designed   51(4): 693–702.
               multi-walled carbon nanotube multilayer for enhancing   116.  Yan Q C, Tomita N, Ikada Y, 1998, Effects of static magnetic
               cell interactions. Carbon, 56(56): 224–234. http://dx.doi.  field on bone formation of rat femurs. Med Eng Phys, 20(6):
               org/10.1016/j.carbon.2013.01.025                   397–402. https://doi.org/10.1016/S1350-4533(98)00051-4
           105.  Wu C, Xia L, Han P, et al., 2015, Graphene-oxide-modified   117.  Xu S, Tomita N, Ohata R, et al., 2001, Static magnetic field
               β-tricalcium phosphate bioceramics stimulate in vitro and   effects on bone formation of rats with an ischemic bone
               in vivo osteogenesis. Carbon, 93: 116–129. https://doi.  model. Biomed Mater Eng, 11(3): 257–263.
               org/10.1016/j.carbon.2015.04.048                118.  Xu S, Okano H, Tomita N, et al., 2011, Recovery effects of
           106.  Shuai C, Guo W, Wu P, et al., 2018, A graphene oxide-  a 180 mT static magnetic field on bone mineral density of
               Ag co-dispersing nanosystem: Dual synergistic effects on   osteoporotic lumbar vertebrae in ovariectomized rats. Evid
               antibacterial activities and mechanical properties of poly-  Based Complement Alternat Med, 2011(4136): 1–8. https://
               mer scaffolds. Chem Eng J, 347:322–333. https://doi.  doi.org/10.1155/2011/620984
               org/10.1016/j.cej.2018.04.092                   119.  Shen W W, Zhao J H, 2010, Pulsed electromagnetic fields
           107.  Zhang J, Zhao S, Zhu M, et al., 2014, 3D-printed magnetic   stimulation affects BMD and local factor production of rats
               Fe 3 O 4 /MBG/PCL composite scaffolds with multifunctionality   with disuse osteoporosis. Bioelectromagnetics, 31(2): 113–
               of bone regeneration, local anticancer drug delivery and   119. https://doi.org/10.1002/bem.20535
               hyperthermia. J Mater Chem B, 2(43): 7583–7595. https://  120.  Taniguchi N, Kanai S, Kawamoto M, et al., 2004, Study
               doi.org/10.1039/C4TB01063A                         on application of static magnetic field for adjuvant arthritis
           108.  Arjmand M, Ardeshirylajimi A, Maghsoudi H, et al., 2017,   rats. Evid Based Complement Alternat Med, 1(2): 187–191.
               Osteogenic differentiation potential of mesenchymal stem   https://doi.org/10.1093/ecam/neh024
               cells cultured on nanofibrous scaffold improved in the   121.  Taniguchi N, Kanai S, 2007, Efficacy of static magnetic
               presence of pulsed electromagnetic field. J Cell Physiol,   field for locomotor activity of experimental osteopenia. Evid
               233(2): 1061–1070. https://doi.org/10.1002/jcp.25962  Based Complement Alternat Med, 4(1): 99–105. https://doi.
           109.  Gao C, Peng S, Feng P, et al., 2017, Bone biomaterials and   org/10.1093/ecam/nel067
               interactions with stem cells. Bone Res, 5: 17059. https://doi.  122.  Puricelli E, Ulbrich L M, Ponzoni D, et al., 2006, Histo-
               org/10.1038/boneres.2017.59                        logical analysis of the effects of a static magnetic field on
           110.  Gao C, Feng P, Peng S, et al., 2017, Carbon nanotubes,   bone healing process in rat femurs. Head Face Med, 2: 43.
               graphene and boron nitride nanotubes reinforced bioactive   https://doi.org/10.1186/1746-160X-2-43
               ceramics for bone repair. Acta Biomater, 61: 1–20. https://  123.  Puricelli E, Dutra N B, Ponzoni D, 2009, Histological
               doi.org/10.1016/j.actbio.2017.05.020               evaluation of the influence of magnetic field application in
           111.  Sun S, Titushkin I, Cho M, 2006, Regulation of mesenchymal   autogenous bone grafts in rats. Head Face Med, 5: 1. https://
               stem cell adhesion and orientation in 3D collagen scaffold   doi.org/10.1186/1746-160X-5-1
               by electrical stimulus. Bioelectrochemistry, 69(2): 133–141.   124.  Leesungbok R, Ahn S J, Lee S W, et al., 2013, The effects
               https://doi.org/10.1016/j.bioelechem.2005.11.007   of a static magnetic field on bone formation around a
           112.  Midura R J, Ibiwoye M O, Powell K A, et al., 2005, Pulsed   sandblasted, large-grit, acid-etched-treated titanium implant.
               electromagnetic field treatments enhance the healing of   J Oral Implantol, 39(S1): 248–255.

           18                          International Journal of Bioprinting (2018)–Volume 4, Issue 2
   120   121   122   123   124   125   126   127   128   129   130