Page 123 - IJB-4-2
P. 123

Physical stimulations and their osteogenesis-inducing mechanisms

               accelerates the osteogenic differentiation and mineralization   (PEMF). Songklanakarin J Sci Technol, 30(1): 25–29.
               of dental pulp cells. Cytotechnology, 62(2): 143–155. https://  71.  Diniz P, Shomura K, Soejima K, et al., 2002, Effects of
               doi.org/10.1007/s10616-010-9271-3                  pulsed electromagnetic field (PEMF) stimulation on bone
           61.  Yamamoto Y, Ohsaki Y, Goto T, et al., 2003, Effects of   tissue like formation are dependent on the maturation stages
               static magnetic fields on bone formation in rat osteoblast   of the osteoblasts. Bioelectromagnetics, 23(5): 398–405.
               cultures.  J Dent Res, 82(12): 962–966. https://doi.  https://doi.org/10.1002/bem.10032
               org/10.1177/154405910308201205                  72.  Wang P, Liu J, Yang Y, et al., 2017, Differential intensity-
           62.  Aliabouzar M, Zhang L G, Sarkar K, 2016, Lipid coated   dependent effects of pulsed electromagnetic fields on
               microbubbles and low intensity pulsed ultrasound enhance   RANKL-induced osteoclast formation, apoptosis, and bone
               chondrogenesis of human mesenchymal stem cells in 3D   resorbing ability in RAW264.7 cells. Bioelectromagnetics,
               printed scaffolds. Sci Rep, 6: 37728. https://doi.org/10.1038/  38(8): 602–612. https://doi.org/10.1002/bem.22070
               srep37728                                       73.  Chang K, Hongshong C W, Yu Y H, et al., 2004, Pulsed
           63.  Jian Z, Chong D, Peng S, 2014, Alterations of mineral   electromagnetic field stimulation of bone marrow cells
               elements in osteoblast during differentiation under hypo,   derived from ovariectomized rats affects osteoclast
               moderate and high static magnetic fields. Biol Trace Elem   formation and local factor production. Bioelectromagnetics,
               Res, 162(1–3): 153–157. https://doi.org/10.1007/s12011-  25(2): 134–141. https://doi.org/10.1002/bem.10168
               014-0157-7                                      74.  Zhao Z, Watt C, Karystinou A, et al., 2011, Directed
           64.  Di S, Tian Z, Qian A, et al., 2012, Large gradient high   migration of human bone marrow mesenchymal stem cells in
               magnetic field affects FLG29.1 cells differentiation to form   a physiological direct current electric field. Eur Cell Mater,
               osteoclast-like cells. Int J Radiat Biol, 88(11): 806–813.   22: 344–358.
               https://doi.org/10.3109/09553002.2012.698365    75.  Banks T A, Luckman P S, Frith J E, et al., 2015, Effects of
           65.  Huang J, Liu W, Liang Y, et al., 2018, Preparation and   electric fields on human mesenchymal stem cell behaviour
               biocompatibility of diphasic magnetic nanocomposite   and morphology using a novel multichannel device. Integr
               scaffold. Mater Sci Eng C Mater Biol Appl, 87: 70–77.   Biol (Camb), 7(6): 693–712. https://doi.org/10.1039/
               https://doi.org/10.1016/j.msec.2018.02.003         c4ib00297k
           66.  Yun H M, Ahn S J, Park K R, et al., 2016, Magnetic   76.  Creecy C M, O'Neill C F, Arulanandam B P, et al., 2013,
               nanocomposite scaffolds combined with static magnetic field   Mesenchymal stem cell osteodifferentiation in response
               in the stimulation of osteoblastic differentiation and bone   to alternating electric current. Tissue Eng Part A, 19(3–4):
               formation. Biomaterials, 85: 88–98. https://doi.org/10.1016/  467–474. https://doi.org/10.1089/ten.TEA.2012.0091
               j.biomaterials.2016.01.035                      77.  Wang X, Gao Y, Shi H, et al., 2016, Influence of the intensity
           67.  Feng S W, Lo Y J, Chang W J, et al., 2010, Static magnetic   and loading time of direct current electric field on the
               field exposure promotes differentiation of osteoblastic cells   directional migration of rat bone marrow mesenchymal stem
               grown on the surface of a poly-L-lactide substrate. Med   cells. Front Med, 10(3): 286–296. https://doi.org/10.1007/
               Biol Eng Comput, 48(8): 793–798. https://doi.org/10.1007/  s11684-016-0456-9
               s11517-010-0639-5                               78.  Grunert P C, Jonitz-Heincke A, Su Y, et al., 2014, Establish-
           68.  Yan J L, Zhou J, Ma H P, et al., 2015, Pulsed electromagnetic   ment of a novel in vitro test setup for electric and magnetic
               fields promote osteoblast mineralization and maturation   stimulation of human osteoblasts. Cell Biochem Biophys,
               needing the existence of primary cilia. Mol Cell Endocrinol,   70(2): 805–817. https://doi.org/10.1007/s12013-014-9984-6
               404: 132–140. https://doi.org/10.1016/j.mce.2015.01.031  79.  Jin G H, Kim G H, 2013, The effect of sinusoidal AC electric
           69.  Zhou J, Xue-Yan L I, Chen K M, et al., 2010, Effect of   stimulation of 3D PCL/CNT and PCL/β-TCP based bio-
               sinusoidal electricity magnetic field at different intensity on   composites on cellular activities for bone tissue regeneration.
               the differentiation and collagen-I,BMP-2 mRNA expression   J Mater Chem B, 1(10): 1439–1452.
               of osteoblasts in vitro. Chin J Med Phys, 5: 2173–2177.   80.  Rubin C, Bolander M, Ryaby J P, et al., 2001, The use
           70.  Kamolmatyakul S, Jinorose U, Prinyaroj P, et al., 2008,   of low-intensity ultrasound to accelerate the healing of
               Responses of human normal osteoblast cells and osteoblast-  fractures. J Bone Joint Surg Am, 83-A(2): 259–270.
               like cell line, MG-63 cells, to pulse electromagnetic field   81.  Naruse K, Miyauchi A, Itoman M, et al., 2003, Distinct

           16                          International Journal of Bioprinting (2018)–Volume 4, Issue 2
   118   119   120   121   122   123   124   125   126   127   128