Page 127 - IJB-4-2
P. 127
Physical stimulations and their osteogenesis-inducing mechanisms
146. Zhang Y, Zhai D, Xu M, et al., 2016, 3D-printed bioceramic cell clone ST2 cells to low-intensity pulsed ultrasound.
scaffolds with Fe 3 O 4 /graphene oxide nanocomposite Biochem Biophys Res Commun, 268(1): 216–220. https://
interface for hyperthermia therapy of bone tumor cells. J doi.org/10.1006/bbrc.2000.2094
Mater Chem B, 4(17): 2874–2886. 157. Iwashina T, Mochida J, Miyazaki T, et al., 2006, Low-
147. Lei T, Liang Z, Li F, et al., 2017, Pulsed electromagnetic intensity pulsed ultrasound stimulates cell proliferation and
fields (PEMF) attenuate changes in vertebral bone mass, proteoglycan production in rabbit intervertebral disc cells
architecture and strength in ovariectomized mice. Bone, 108: cultured in alginate. Biomaterials, 27(3): 354–361. https://
10–19. https://doi.org/10.1016/j.bone.2017.12.008 doi.org/10.1016/j.biomaterials.2005.06.031
148. Adams E (inventor & assignee), Apparatus and method for 158. Fermor B, Weinberg J B, Pisetsky D S, et al., 2001, The
invasive electrical stimulation of bone fractures. US patent. effects of static and intermittent compression on nitric
US4602638A, 1986 October 3. oxide production in articular cartilage explants. J Orthop
149. Yonemori K, Matsunaga S, Ishidou Y, et al., 1996, Early Res, 19(4): 729–737. https://doi.org/10.1016/S0736-
effects of electrical stimulation on osteogenesis. Bone, 19(2): 0266(00)00049-8
173–180. https://doi.org/10.1016/8756-3282(96)00169-X 159. Zhong Z, Zeng X L, Ni J H, et al., 2013, Comparison of
150. Szewczenko J, 2007, Influence of bone union electro- the biological response of osteoblasts after tension and
stimulation on corrosion of bone stabilizer in rabbits. Arch compression. Eur J Orthod, 35(1): 59–65. https://doi.
Mater Sci Eng, 28(5): 277–280. org/10.1093/ejo/cjr016
151. Jr B T, Black J, Brighton C T, et al., 1983, Electrical osteo- 160. Jiang J, Zhao L G, Teng Y J, et al., 2015, ERK5 signalling
genesis by low direct current. J Orthop Res, 1(2): 120–128. pathway is essential for fluid shear stress-induced COX-2
https://doi.org/10.1002/jor.1100010202 gene expression in MC3T3-E1 osteoblast. Mol Cell Biochem,
152. Brighton C T, Hozack W J, Brager M D, et al., 1985, 406(1–2): 237–243. https://doi.org/10.1007/s11010-015-
Fracture healing in the rabbit fibula when subjected to 2441-z
various capacitively coupled electrical fields. J Orthop Res, 161. Tan S D, Vries T J D, Kuijpers-Jagtman A M, et al.,
3(3): 331–340. https://doi.org/10.1002/jor.1100030310 2007, Osteocytes subjected to fluid flow inhibit osteoclast
153. Brighton C T, Pollack S R, 1985, Treatment of recalcitrant formation and bone resorption. Bone, 41(5): 745–751.
non-union with a capacitively coupled electrical field. A https://doi.org/10.1016/j.bone.2007.07.019
preliminary report. J Bone Joint Surg Am, 67(4): 577–585. 162. You L, Temiyasathit S, Lee P, et al., 2008, Osteocytes as
154. Fitzsimmons R J, Strong D D, Mohan S, et al., 1992, Low- mechanosensors in the inhibition of bone resorption due
amplitude, low-frequency electric field-stimulated bone to mechanical loading. Bone, 42(1): 172–179. https://doi.
cell proliferation may in part be mediated by increased org/10.1016/j.bone.2007.09.047
IGF-II release. J Cell Physiol, 150(1): 84–89. https://doi. 163. Kim C H, You L, Yellowley C E, et al., 2006, Oscillatory
org/10.1002/jcp.1041500112 fluid flow-induced shear stress decreases osteoclastogenesis
155. Romano C L, Romano D, Logoluso N, 2009, Low-intensity through RANKL and OPG signaling. Bone, 39(5): 1043–
pulsed ultrasound for the treatment of bone delayed union or 1047. https://doi.org/10.1016/j.bone.2006.05.017
nonunion: A review. Ultrasound Med Biol, 35(4): 529–536. 164. Cheung W Y, Liu C, Tonelli-Zasarsky R M, et al., 2015,
https://doi.org/10.1016/j.ultrasmedbio.2008.09.029 Osteocyte apoptosis is mechanically regulated and induces
156. Naruse K, Mikuni-Takagaki Y, Azuma Y, et al., 2000, angiogenesis in vitro. J Orthop Res, 29(4): 523–530. https://
Anabolic response of mouse bone-marrow-derived stromal doi.org/10.1002/jor.21283.
20 International Journal of Bioprinting (2018)–Volume 4, Issue 2

