Page 126 - IJB-4-2
P. 126

Shuai C, et al.

           125.  Inoue N, Ohnishi I, Chen D, et al., 2002, Effect of pulsed   of intramembranous bone and sutures upon in vivo cyclic
               electromagnetic fields (PEMF) on late-phase osteotomy gap   tensile and compressive loading. Bone, 42(2): 432–438.
               healing in a canine tibial model. J Orthop Res, 20(5): 1106–  https://doi.org/10.1016/j.bone.2007.05.014
               1114. https://doi.org/10.1016/S0736-0266(02)00031-1  136.  Jing D, Shen G, Huang J, et al., 2010, Circadian rhythm
           126.  Zaki M G, Gadallah N A, Mansour M, et al., 1999, Enhanced   affects the preventive role of pulsed electromagnetic fields
               fracture healing with pulsed electromagnetic field. Egypt   on ovariectomy-induced osteoporosis in rats. Bone, 46(2):
               Rheumatol Rehab, 26(4): 845–854.                   487–495. https://doi.org/10.1016/j.bone.2009.09.021
           127.  El-Hakim I E, Azim A M, El-Hassan M F, et al., 2004,   137.  Sanchez C, Gabay O, Salvat C, et al., 2009, Mechanical
               Preliminary investigation into the effects of electrical   loading highly increases IL-6 production and decreases OPG
               stimulation on mandibular distraction osteogenesis in   expression by osteoblasts. Osteoarthritis Cartilage, 17(4):
               goats. Int J Oral Maxillofac Surg, 33(1): 42–47. https://doi.  473–481. https://doi.org/10.1016/j.joca.2008.09.007
               org/10.1054/ijom.2003.0445                      138.  Zhou J, Liao Y, Zeng Y, et al., 2017, Effect of inter-
           128.  Fredericks D C, Smucker J, Petersen E B, et al., 2007,   vention initiation timing of pulsed electromagnetic
               Effects of direct current electrical stimulation on gene   field on ovariectomy-induced osteoporosis in rats.
               expression of osteopromotive factors in a posterolateral   Bioelectromagnetics, 38(6): 456-465. https://doi.
               spinal fusion model. Spine (Phila Pa 1976), 32(2): 174–181.   org/10.1002/bem.22059
               https://doi.org/10.1097/01.brs.0000251363.77027.49  139.  Aydin N, Bezer M, 2011, The effect of an intramedullary
           129.  Park S H, Silva M, 2004, Neuromuscular electrical   implant with a static magnetic field on the healing of the
               stimulation enhances fracture healing: Results of an   osteotomised rabbit femur. Int Orthop, 35(1): 135–141.
               animal model. J Orthop Res, 22(2): 382–387. https://doi.  https://doi.org/10.1007/s00264-009-0932-9
               org/10.1016/j.orthres.2003.08.007               140.  Saifzadeh S, Hobbenaghi R, Jalali F S S, et al., 2007,
           130.  Chen S C, Lai C H, Chan W P, et al., 2005, Increases   Effect of a static magnetic field on bone healing in the dog:
               in bone mineral density after functional electrical sti-  Radiographic and histopathological studies. Iran J Vet Res,
               mulation cycling exercises in spinal cord injured pa-  8(1): 8–15.
               tients. Disabil Rehabil, 27(22): 1337–1341. https://doi.  141.  Zhang H, Gan L, Zhu X, et al., 2018, Moderate-intensity
               org/10.1080/09638280500164032                      4mT static magnetic fields prevent bone architectural
           131.  Azuma Y, Ito M, Harada Y, et al., 2001, Low-intensity   deterioration and strength reduction by stimulating bone
               pulsed ultrasound accelerates rat femoral fracture healing by   formation in streptozotocin-treated diabetic rats. Bone, 107:
               acting on the various cellular reactions in the fracture callus.   36–44. https://doi.org/10.1016/j.bone.2017.10.024
               J Bone Miner Res, 16(4): 671–680. https://doi.org/10.1359/  142.  Zhang  J,  Meng  X,  Ding  C,  et al.,  2016, Regulation
               jbmr.2001.16.4.671                                 of osteoclast differentiation by static magnetic fields.
           132.  Takikawa S, Matsui N, Kokubu T, et al., 2001, Low-intensity   Electromagn Biol Med, 36(1): 8–19. https://doi.org/10.3109/
               pulsed ultrasound initiates bone healing in rat nonunion   15368378.2016.1141362
               fracture model. J Ultrasound Med, 20(3): 197–205. https://  143.  Cai Q, Shi Y, Shan D, et al., 2015, Osteogenic differentiation
               doi.org/10.7863/jum.2001.20.3.197                  of MC3T3-E1 cells on poly(L-lactide)/Fe 3 O 4  nanofibers
           133.  Fritton J C, Myers E R, Wright T M, et al., 2005, Loading   with static magnetic field exposure. Mater Sci Eng C
               induces site-specific increases in mineral content assessed by   Mater Biol Appl, 55: 166–173. https://doi.org/10.1016/
               microcomputed tomography of the mouse tibia. Bone, 36(6):   j.msec.2015.05.002
               1030–1038. https://doi.org/10.1016/j.bone.2005.02.013  144.  Boda S K, Thrivikraman G, Basu B, 2015, Magnetic
           134.  Lambers F M, Schulte F A, Kuhn G, et al., 2011, Mouse tail   field assisted stem cell differentiation – Role of substrate
               vertebrae adapt to cyclic mechanical loading by increasing   magnetization in osteogenesis. J Mater Chem B, 3(16):
               bone formation rate and decreasing bone resorption rate   3150–3168.
               as shown by time-lapsed in vivo imaging of dynamic   145.  Singh R K, Patel K D, Lee J H, et al., 2014, Potential of
               bone morphometry. Bone, 49(6): 1340–1350. https://doi.  magnetic nanofiber scaffolds with mechanical and biological
               org/10.1016/j.bone.2011.08.035                     properties applicable for bone regeneration. PLoS One, 9(4):
           135.  Peptan A I, Lopez A, Kopher R A, et al., 2008, Responses   e91584. https://doi.org/10.1371/journal.pone.0091584

                                       International Journal of Bioprinting (2018)–Volume 4, Issue 2        19
   121   122   123   124   125   126   127   128   129   130   131