Page 126 - IJB-4-2
P. 126
Shuai C, et al.
125. Inoue N, Ohnishi I, Chen D, et al., 2002, Effect of pulsed of intramembranous bone and sutures upon in vivo cyclic
electromagnetic fields (PEMF) on late-phase osteotomy gap tensile and compressive loading. Bone, 42(2): 432–438.
healing in a canine tibial model. J Orthop Res, 20(5): 1106– https://doi.org/10.1016/j.bone.2007.05.014
1114. https://doi.org/10.1016/S0736-0266(02)00031-1 136. Jing D, Shen G, Huang J, et al., 2010, Circadian rhythm
126. Zaki M G, Gadallah N A, Mansour M, et al., 1999, Enhanced affects the preventive role of pulsed electromagnetic fields
fracture healing with pulsed electromagnetic field. Egypt on ovariectomy-induced osteoporosis in rats. Bone, 46(2):
Rheumatol Rehab, 26(4): 845–854. 487–495. https://doi.org/10.1016/j.bone.2009.09.021
127. El-Hakim I E, Azim A M, El-Hassan M F, et al., 2004, 137. Sanchez C, Gabay O, Salvat C, et al., 2009, Mechanical
Preliminary investigation into the effects of electrical loading highly increases IL-6 production and decreases OPG
stimulation on mandibular distraction osteogenesis in expression by osteoblasts. Osteoarthritis Cartilage, 17(4):
goats. Int J Oral Maxillofac Surg, 33(1): 42–47. https://doi. 473–481. https://doi.org/10.1016/j.joca.2008.09.007
org/10.1054/ijom.2003.0445 138. Zhou J, Liao Y, Zeng Y, et al., 2017, Effect of inter-
128. Fredericks D C, Smucker J, Petersen E B, et al., 2007, vention initiation timing of pulsed electromagnetic
Effects of direct current electrical stimulation on gene field on ovariectomy-induced osteoporosis in rats.
expression of osteopromotive factors in a posterolateral Bioelectromagnetics, 38(6): 456-465. https://doi.
spinal fusion model. Spine (Phila Pa 1976), 32(2): 174–181. org/10.1002/bem.22059
https://doi.org/10.1097/01.brs.0000251363.77027.49 139. Aydin N, Bezer M, 2011, The effect of an intramedullary
129. Park S H, Silva M, 2004, Neuromuscular electrical implant with a static magnetic field on the healing of the
stimulation enhances fracture healing: Results of an osteotomised rabbit femur. Int Orthop, 35(1): 135–141.
animal model. J Orthop Res, 22(2): 382–387. https://doi. https://doi.org/10.1007/s00264-009-0932-9
org/10.1016/j.orthres.2003.08.007 140. Saifzadeh S, Hobbenaghi R, Jalali F S S, et al., 2007,
130. Chen S C, Lai C H, Chan W P, et al., 2005, Increases Effect of a static magnetic field on bone healing in the dog:
in bone mineral density after functional electrical sti- Radiographic and histopathological studies. Iran J Vet Res,
mulation cycling exercises in spinal cord injured pa- 8(1): 8–15.
tients. Disabil Rehabil, 27(22): 1337–1341. https://doi. 141. Zhang H, Gan L, Zhu X, et al., 2018, Moderate-intensity
org/10.1080/09638280500164032 4mT static magnetic fields prevent bone architectural
131. Azuma Y, Ito M, Harada Y, et al., 2001, Low-intensity deterioration and strength reduction by stimulating bone
pulsed ultrasound accelerates rat femoral fracture healing by formation in streptozotocin-treated diabetic rats. Bone, 107:
acting on the various cellular reactions in the fracture callus. 36–44. https://doi.org/10.1016/j.bone.2017.10.024
J Bone Miner Res, 16(4): 671–680. https://doi.org/10.1359/ 142. Zhang J, Meng X, Ding C, et al., 2016, Regulation
jbmr.2001.16.4.671 of osteoclast differentiation by static magnetic fields.
132. Takikawa S, Matsui N, Kokubu T, et al., 2001, Low-intensity Electromagn Biol Med, 36(1): 8–19. https://doi.org/10.3109/
pulsed ultrasound initiates bone healing in rat nonunion 15368378.2016.1141362
fracture model. J Ultrasound Med, 20(3): 197–205. https:// 143. Cai Q, Shi Y, Shan D, et al., 2015, Osteogenic differentiation
doi.org/10.7863/jum.2001.20.3.197 of MC3T3-E1 cells on poly(L-lactide)/Fe 3 O 4 nanofibers
133. Fritton J C, Myers E R, Wright T M, et al., 2005, Loading with static magnetic field exposure. Mater Sci Eng C
induces site-specific increases in mineral content assessed by Mater Biol Appl, 55: 166–173. https://doi.org/10.1016/
microcomputed tomography of the mouse tibia. Bone, 36(6): j.msec.2015.05.002
1030–1038. https://doi.org/10.1016/j.bone.2005.02.013 144. Boda S K, Thrivikraman G, Basu B, 2015, Magnetic
134. Lambers F M, Schulte F A, Kuhn G, et al., 2011, Mouse tail field assisted stem cell differentiation – Role of substrate
vertebrae adapt to cyclic mechanical loading by increasing magnetization in osteogenesis. J Mater Chem B, 3(16):
bone formation rate and decreasing bone resorption rate 3150–3168.
as shown by time-lapsed in vivo imaging of dynamic 145. Singh R K, Patel K D, Lee J H, et al., 2014, Potential of
bone morphometry. Bone, 49(6): 1340–1350. https://doi. magnetic nanofiber scaffolds with mechanical and biological
org/10.1016/j.bone.2011.08.035 properties applicable for bone regeneration. PLoS One, 9(4):
135. Peptan A I, Lopez A, Kopher R A, et al., 2008, Responses e91584. https://doi.org/10.1371/journal.pone.0091584
International Journal of Bioprinting (2018)–Volume 4, Issue 2 19

