Page 193 - IJB-10-4
P. 193
International Journal of Bioprinting Effects of structure on the interbody cage
15. Han X, Gao Y, Ding Y, et al. In vitro performance of 3D 27. Kim HS, Song JS, Heo W, Cha JH, Rhee DY. Comparative
printed PCL −β -TCP degradable spinal fusion cage. study between a curved and a wedge PEEK cage for single-
J Biomater Appl. 2021;35(10):1304-1314. level anterior cervical discectomy and interbody fusion.
doi: 10.1177/0885328220978492 Korean J Spine. 2012;9(3):181-186.
doi: 10.14245/kjs.2012.9.3.181
16. Abbah SA, Lam CXF, Ramruttun AK, Goh JCH, Wong
HK. Fusion performance of low-dose recombinant human 28. Stella JA, D’Amore A, Wagner WR, Sacks MS. On the
bone morphogenetic protein 2 and bone marrow-derived biomechanical function of scaffolds for engineering load-
multipotent stromal cells in biodegradable scaffolds. Spine. bearing soft tissues. Acta Biomater. 2010;6(7):2365-2381.
2011;36(21):1752-1759. doi: 10.1016/j.actbio.2010.01.001
doi: 10.1097/BRS.0b013e31822576a4
29. Knutsen AR. Static and dynamic fatigue behavior of topology
17. Cao L, Chen Q, Jiang L-B, et al. Bioabsorbable self-retaining designed and conventional 3D printed bioresorbable PCL
PLA/nano-sized beta-TCP cervical spine interbody fusion cervical interbody fusion devices. J Mech Behav Biomed
cage in goat models: an in vivo study. IJN. 2017;12:7197-7205. Mater. 2015;49:332-342.
doi: 10.2147/IJN.S132041 doi: 10.1016/j.jmbbm.2015.05.015
18. Rezania N. Three-dimensional printing of polycaprolactone/ 30. Bittner SM, Smith BT, Diaz-Gomez L, et al. Fabrication and
hydroxyapatite bone tissue engineering scaffolds mechanical mechanical characterization of 3D printed vertical uniform
properties and biological behavior. J Mater Sci. 2022;33(3):31. and gradient scaffolds for bone and osteochondral tissue
doi: 10.1007/s10856-022-06653-8 engineering. Acta Biomater. 2019;90:37-48.
19. Liu F, Kang H, Liu Z, et al. 3D printed multi-functional doi: 10.1016/j.actbio.2019.03.041
scaffolds based on poly(ε-caprolactone) and hydroxyapatite 31. Zhang Y, Yu W, Ba Z, Cui S, Wei J, Li H. 3D-printed scaffolds
composites. Nanomaterials. 2021;11(9):2456. of mesoporous bioglass/gliadin/polycaprolactone ternary
doi: 10.3390/nano11092456 composite for enhancement of compressive strength,
20. Backes EH, Beatrice CAG, Shimomura KMB, et al. degradability, cell responses and new bone tissue ingrowth.
Development of poly(Ɛ-polycaprolactone)/hydroxyapatite Int J Nanomed. 2018;13:5433-5447.
composites for bone tissue regeneration. J Mater Res. doi: 10.2147/IJN.S164869
2021;36(15):3050-3062. 32. Liu H, Ahlinder A, Yassin MA, Finne-Wistrand A, Gasser
doi: 10.1557/s43578-021-00316-0 TC. Computational and experimental characterization
21. Wang F, Tankus EB, Santarella F, et al. Fabrication and of 3D-printed PCL structures toward the design of soft
characterization of PCL/HA filament as a 3D printing biological tissue scaffolds. Mater Des. 2020;188:11.
material using thermal extrusion technology for bone tissue doi: 10.1016/j.matdes.2020.108488
engineering. Polymers. 2022;14(4):669. 33. Scocozza F. Shape fidelity and sterility assessment of 3D
doi: 10.3390/polym14040669 printed polycaprolactone and hydroxyapatite scaffolds.
22. Ma J. Modification of 3D printed PCL scaffolds by PVAc J Polym Res. 2021;28(9):327.
and HA to enhance cytocompatibility and osteogenesis. RSC doi: 10.1007/s10965-021-02675-y
Adv. 2019;9(10):5338-5346. 34. Kia C, Antonacci CL, Wellington I, Makanji HS, Esmende
doi: 10.1039/c8ra06652c SM. Spinal implant osseointegration and the role of
23. Doyle SE, Henry L, McGennisken E, et al. Characterization 3D printing: an analysis and review of the literature.
of polycaprolactone nanohydroxyapatite composites with Bioengineering. 2022;9(3):108.
tunable degradability suitable for indirect printing. Polymers. doi: 10.3390/bioengineering9030108
2021;13(2):295. 35. Wixted CM, Peterson JR, Kadakia RJ, Adams SB. Three-
doi: 10.3390/polym13020295 dimensional printing in orthopaedic surgery: current
24. Shikinami Y, Okuno M. Mechanical evaluation of novel applications and future developments. JAAOS Glob Res Rev.
spinal interbody fusion cages made of bioactive, resorbable 2021;5(4):e20.00230-11.
composites. Biomaterials. 2003;24(18):3161-3170. doi: 10.5435/JAAOSGlobal-D-20-00230
doi: 10.1016/S0142-9612(03)00155-8 36. Amelot A, Colman M, Loret J-E. Vertebral body replacement
25. Jiao Z, Luo B, Xiang S, Ma H, Yu Y, Yang W. 3D printing of using patient-specific three–dimensional-printed polymer
HA / PCL composite tissue engineering scaffolds. Adv Ind implants in cervical spondylotic myelopathy: an encouraging
Eng Polym Res. 2019;2(4):196-202. preliminary report. Spine J. 2018;18(5):892-899.
doi: 10.1016/j.aiepr.2019.09.003 doi: 10.1016/j.spinee.2018.01.019
26. Liu D, Nie W, Li D, et al. 3D printed PCL/SrHA scaffold 37. Pan CT, Lin CH, Huang YS, et al. Design of interbody fusion
for enhanced bone regeneration. Chem Eng J. 2019;362: cages of Ti6Al4V with gradient porosity using a selective
269-279. laser melting process for spinal fusion arthroplasty. J Laser
doi: 10.1016/j.cej.2019.01.015 Micro/Nanoeng. 2017;12(1):34-44.
Volume 10 Issue 4 (2024) 185 doi: 10.36922/ijb.1996

