Page 193 - IJB-10-4
P. 193

International Journal of Bioprinting                                Effects of structure on the interbody cage




            15.  Han X, Gao Y, Ding Y, et al. In vitro performance of 3D   27.  Kim HS, Song JS, Heo W, Cha JH, Rhee DY. Comparative
               printed PCL  −β -TCP degradable spinal fusion cage.    study between a curved and a wedge PEEK cage for single-
               J Biomater Appl. 2021;35(10):1304-1314.            level anterior cervical discectomy and interbody fusion.
               doi: 10.1177/0885328220978492                      Korean J Spine. 2012;9(3):181-186.
                                                                  doi: 10.14245/kjs.2012.9.3.181
            16.  Abbah SA, Lam CXF, Ramruttun AK, Goh JCH, Wong
               HK. Fusion performance of low-dose recombinant human   28.  Stella JA, D’Amore A, Wagner WR, Sacks MS. On the
               bone morphogenetic protein 2 and bone marrow-derived   biomechanical function of scaffolds for engineering load-
               multipotent stromal cells in biodegradable scaffolds. Spine.   bearing soft tissues. Acta Biomater. 2010;6(7):2365-2381.
               2011;36(21):1752-1759.                             doi: 10.1016/j.actbio.2010.01.001
               doi: 10.1097/BRS.0b013e31822576a4
                                                               29.  Knutsen AR. Static and dynamic fatigue behavior of topology
            17.  Cao L, Chen Q, Jiang L-B, et al. Bioabsorbable self-retaining   designed and conventional 3D printed bioresorbable PCL
               PLA/nano-sized beta-TCP cervical spine interbody fusion   cervical interbody fusion devices.  J Mech Behav Biomed
               cage in goat models: an in vivo study. IJN. 2017;12:7197-7205.   Mater. 2015;49:332-342.
               doi: 10.2147/IJN.S132041                           doi: 10.1016/j.jmbbm.2015.05.015
            18.  Rezania N. Three-dimensional printing of polycaprolactone/  30.  Bittner SM, Smith BT, Diaz-Gomez L, et al. Fabrication and
               hydroxyapatite bone tissue engineering scaffolds mechanical   mechanical characterization of 3D printed vertical uniform
               properties and biological behavior. J Mater Sci. 2022;33(3):31.   and gradient scaffolds for bone and osteochondral tissue
               doi: 10.1007/s10856-022-06653-8                    engineering. Acta Biomater. 2019;90:37-48.
            19.  Liu F, Kang H, Liu Z, et al. 3D printed multi-functional      doi: 10.1016/j.actbio.2019.03.041
               scaffolds based on poly(ε-caprolactone) and hydroxyapatite   31.  Zhang Y, Yu W, Ba Z, Cui S, Wei J, Li H. 3D-printed scaffolds
               composites. Nanomaterials. 2021;11(9):2456.        of mesoporous bioglass/gliadin/polycaprolactone ternary
               doi: 10.3390/nano11092456                          composite for enhancement of compressive strength,
            20.  Backes  EH,  Beatrice  CAG,  Shimomura  KMB,  et  al.   degradability, cell responses and new bone tissue ingrowth.
               Development of poly(Ɛ-polycaprolactone)/hydroxyapatite   Int J Nanomed. 2018;13:5433-5447.
               composites for bone tissue regeneration.  J Mater Res.      doi: 10.2147/IJN.S164869
               2021;36(15):3050-3062.                          32.  Liu H, Ahlinder A, Yassin MA, Finne-Wistrand A, Gasser
               doi: 10.1557/s43578-021-00316-0                    TC.  Computational and  experimental  characterization
            21.  Wang F, Tankus EB, Santarella F, et al. Fabrication and   of 3D-printed PCL structures toward the design of soft
               characterization of PCL/HA filament as a 3D printing   biological tissue scaffolds. Mater Des. 2020;188:11.
               material using thermal extrusion technology for bone tissue      doi: 10.1016/j.matdes.2020.108488
               engineering. Polymers. 2022;14(4):669.          33.  Scocozza F. Shape fidelity and sterility assessment of 3D
               doi: 10.3390/polym14040669                         printed polycaprolactone and hydroxyapatite scaffolds.
            22.  Ma J. Modification of 3D printed PCL scaffolds by PVAc   J Polym Res. 2021;28(9):327.
               and HA to enhance cytocompatibility and osteogenesis. RSC      doi: 10.1007/s10965-021-02675-y
               Adv. 2019;9(10):5338-5346.                      34.  Kia C, Antonacci CL, Wellington I, Makanji HS, Esmende
               doi: 10.1039/c8ra06652c                            SM. Spinal implant osseointegration and the role of
            23.  Doyle SE, Henry L, McGennisken E, et al. Characterization   3D printing: an analysis and review of the literature.
               of  polycaprolactone nanohydroxyapatite  composites  with   Bioengineering. 2022;9(3):108.
               tunable degradability suitable for indirect printing. Polymers.      doi: 10.3390/bioengineering9030108
               2021;13(2):295.                                 35.  Wixted CM, Peterson JR, Kadakia RJ, Adams SB. Three-
               doi: 10.3390/polym13020295                         dimensional printing in orthopaedic surgery: current
            24.  Shikinami  Y, Okuno M. Mechanical evaluation of novel   applications and future developments. JAAOS Glob Res Rev.
               spinal interbody fusion cages made of bioactive, resorbable   2021;5(4):e20.00230-11.
               composites. Biomaterials. 2003;24(18):3161-3170.      doi: 10.5435/JAAOSGlobal-D-20-00230
               doi: 10.1016/S0142-9612(03)00155-8              36.  Amelot A, Colman M, Loret J-E. Vertebral body replacement
            25.  Jiao Z, Luo B, Xiang S, Ma H, Yu Y, Yang W. 3D printing of   using patient-specific three–dimensional-printed polymer
               HA / PCL composite tissue engineering scaffolds. Adv Ind   implants in cervical spondylotic myelopathy: an encouraging
               Eng Polym Res. 2019;2(4):196-202.                  preliminary report. Spine J. 2018;18(5):892-899.
               doi: 10.1016/j.aiepr.2019.09.003                   doi: 10.1016/j.spinee.2018.01.019
            26.  Liu D, Nie W, Li D, et al. 3D printed PCL/SrHA scaffold   37.  Pan CT, Lin CH, Huang YS, et al. Design of interbody fusion
               for enhanced bone regeneration.  Chem Eng J. 2019;362:   cages of Ti6Al4V with gradient porosity using a selective
               269-279.                                           laser melting process for spinal fusion arthroplasty. J Laser
               doi: 10.1016/j.cej.2019.01.015                     Micro/Nanoeng. 2017;12(1):34-44.

            Volume 10 Issue 4 (2024)                       185                                doi: 10.36922/ijb.1996
   188   189   190   191   192   193   194   195   196   197   198