Page 268 - IJB-10-4
P. 268

International Journal of Bioprinting                                   Cell viability in printing structured inks




            Conflict of interest                               7.   Lepowsky E, Muradoglu M, Tasoglu S. Towards preserving
                                                                  post-printing cell viability and improving the resolution:
            The authors declare no conflicts of interest.         past, present, and future of 3D bioprinting theory.
                                                                  Bioprinting. 2018;11:e00034.
            Author contributions                                  doi: 10.1016/j.bprint.2018.e00034
            Conceptualization: Pengju Wang                     8.   Knight E, Przyborski S. Advances in 3D cell culture
            Formal analysis: Pengju Wang                          technologies enabling tissue‐like structures to be created in
            Investigation: Pengju Wang                            vitro. J Anat. 2015;227(6):746-756.
            Methodology: Pengju Wang, Yazhou Sun                  doi: 10.1111/joa.12257
            Supervision: Yazhou Sun, Liwei Diao, Haitao Liu    9.   Brett E, Chung N,  Leavitt WT,  Momeni  A, Longaker MT,
            Writing – original draft: Pengju Wang                 Wan DC. A review of cell-based strategies for soft tissue
            Writing – review & editing:  Pengju Wang, Yazhou Sun,   reconstruction. Tissue Eng Part B Rev. 2017;23(4):336-346.
               Haitao Liu                                         doi: 10.1089/ten.teb.2016.0455
                                                               10.  Wang P, Sun Y, Shi X, Shen H, Ning H, Liu H. 3D printing
            Ethics approval and consent to participate            of tissue engineering scaffolds: a focus on vascular
                                                                  regeneration. Bio-Des Manuf. 2021;4(3):344-378.
            Not applicable.                                       doi: 10.1007/s42242-020-00109-0

            Consent for publication                            11.  Fang  Y,  Ouyang  L,  Zhang  T,  Wang  C,  Lu  B,  Sun  W.
                                                                  Optimizing bifurcated channels within an anisotropic
            Not applicable.                                       scaffold for engineering vascularized oriented tissues. Adv
                                                                  Healthc Mater. 2020;9(24):2000782.
            Availability of data                                  doi: 10.1002/adhm.202000782
                                                               12.  Wang T, Li W, Zhang Y, et al. Bioprinted constructs that
            Data  are  available  from  the  corresponding  author  upon   simulate nerve–bone crosstalk to improve microenvironment
            reasonable request.                                   for bone repair. Bioact Mater. 2023;27:377-393.
                                                                  doi: 10.1016/j.bioactmat.2023.02.013
            References
                                                               13.  He Y, Xie M, Gao Q, Fu J. Why choose 3D bioprinting? Part
            1.   Pacheco DP, Vargas NS, Visentin S, Petrini P. From tissue   I: a brief introduction of 3D bioprinting for the beginners.
               engineering to engineering tissues: the role and application   Bio-Des Manuf. 2019;2(4):221-224.
               of in vitro models. Biomater Sci. 2021;9(1):70-83.      doi: 10.1007/s42242-019-00053-8
               doi: 10.1039/D0BM01097A                         14.  Zhang L, Wang B, Song B, et al. 3D printed biomimetic
                                                                  metamaterials with graded porosity and tapering topology
            2.   Huskin G, Chen J, Davis T, Jun H-W. Tissue-engineered 3D   for improved cell seeding and bone regeneration.  Bioact
               in vitro disease models for high-throughput drug screening.   Mater. 2023;25:677-688.
               Tissue Eng Regen Med. 2023;20(4):523-528.          doi: 10.1016/j.bioactmat.2022.07.009
               doi: 10.1007/s13770-023-00522-3
                                                               15.  Zieliński PS, Gudeti PKR, Rikmanspoel T, Włodarczyk-
            3.   Gaharwar AK, Singh I, Khademhosseini A. Engineered   Biegun MK. 3D printing of bio-instructive materials: toward
               biomaterials for in situ tissue regeneration. Nat Rev Mater.   directing the cell. Bioact Mater. 2023;19:292-327.
               2020;5(9):686-705.                                 doi: 10.1016/j.bioactmat.2022.04.008
               doi: 10.1038/s41578-020-0209-x
                                                               16.  Thakare K, Jerpseth L, Qin H, Pei Z. Bioprinting using
            4.   Huang G, Li F, Zhao X, et al. Functional and biomimetic   algae:  effects of extrusion pressure and needle diameter
               materials for engineering of the three-dimensional cell   on cell quantity in printed samples.  J Manuf Sci Eng.
               microenvironment. Chem Rev. 2017;117(20):12764-12850.  2021;143(1):014501.
               doi: 10.1021/acs.chemrev.7b00094                   doi: 10.1115/1.4048853
            5.   Ullah S, Chen X. Fabrication, applications and challenges   17.  Choi DJ, Kho Y, Park SJ, Kim Y-J, Chung S, Kim C-H.
               of natural biomaterials in tissue engineering.  Appl Mater   Effect of cross-linking on the dimensional stability and
               Today. 2020;20:100656.                             biocompatibility of a tailored 3D-bioprinted gelatin scaffold.
               doi: 10.1016/j.apmt.2020.100656                    Int J Biol Macromol. 2019;135:659-667.
            6.   Wang P, Sun Y, Shi X, Shen H, Ning H, Liu H. Bioscaffolds      doi: 10.1016/j.ijbiomac.2019.05.207
               embedded with regulatory modules for cell growth   18.  Huh J, Moon Y-W, Park J, Atala A, Yoo JJ, Lee SJ.
               and tissue formation: a review.  Bioact Mater. 2021;6(5):   Combinations  of  photoinitiator  and  UV  absorber  for
               1283-1307.                                         cell-based digital light processing (DLP) bioprinting.
               doi: 10.1016/j.bioactmat.2020.10.014               Biofabrication. 2021;13(3):034103.

            Volume 10 Issue 4 (2024)                       260                                doi: 10.36922/ijb.2362
   263   264   265   266   267   268   269   270   271   272   273