Page 270 - IJB-10-4
P. 270

International Journal of Bioprinting                                   Cell viability in printing structured inks




            42.  Rademakers T, Horvath JM, van Blitterswijk CA, LaPointe   based on decellularized human amniotic membrane. Int J
               VLS.  Oxygen  and  nutrient  delivery  in  tissue  engineering:   Biol Macromol. 2023;253:127041.
               approaches to graft vascularization. J Tissue Eng Regen Med.      doi: 10.1016/j.ijbiomac.2023.127041
               2019;13(10):1815-1829.
               doi: 10.1002/term.2932                          49.  Ghahri T, Salehi Z, Aghajanpour S, et al. Development of
                                                                  osteon-like  scaffold-cell  construct  by  quadruple  coaxial
            43.  Liang Q, Gao F, Zeng Z, et al. Coaxial scale‐up printing of   extrusion-based 3D bioprinting of nanocomposite hydrogel.
               diameter‐tunable biohybrid hydrogel microtubes with high   Biomater Adv. 2023;145:213254.
               strength, perfusability, and endothelialization.  Adv Funct      doi: 10.1016/j.bioadv.2022.213254
               Mater. 2020;30(43):2001485.
               doi: 10.1002/adfm.202001485                     50.  Bliley JM, Shiwarski DJ, Feinberg AW. 3D-bioprinted
                                                                  human tissue and the path toward clinical translation. Sci
            44.  Mirdamadi  ES,  Kalhori  D, Zakeri  N,  Azarpira  N,  Solati-  Transl Med. 2022;14(666):eabo7047.
               Hashjin  M. Liver tissue engineering as an emerging      doi: 10.1126/scitranslmed.abo7047
               alternative for liver disease treatment. Tissue Eng Part B Rev.
               2020;26(2):145-163.                             51.  Wang P, Wang S. Computer-aided CT image processing and
               doi: 10.1089/ten.teb.2019.0233                     modeling method for tibia microstructure. Bio-Des Manuf.
                                                                  2020;3(1):71-82.
            45.  Lv W, Zhou H, Aazmi A, et al. Constructing biomimetic liver
               models through biomaterials and vasculature engineering.      doi: 10.1007/s42242-020-00063-x
               Regen Biomater. 2022;9:rbac079.                 52.  Ning  L,  Gil  CJ,  Hwang  B,  et  al.  Biomechanical  factors
               doi: 10.1093/rb/rbac079                            in three-dimensional tissue bioprinting.  Appl Phys Rev.
            46.  Son J, Hong SJ, Lim JW, Jeong W, Jeong JH, Kang H-K.   2020;7(4):041319.
               Engineering tissue‐specific, multiscale microvasculature      doi: 10.1063/5.0023206
               with a capillary network for  prevascularized tissue.  Small   53.  Eça L, Hoekstra M. A procedure for the estimation of the
               Methods. 2021;5(10):2100632.                       numerical uncertainty of CFD calculations based on grid
               doi: 10.1002/smtd.202100632                        refinement studies. J Comput Phys. 2014;262:104-130.
            47.  Xu H-Q, Liu J-C, Zhang Z-Y, Xu C-X.  A review on cell      doi: 10.1016/j.jcp.2014.01.006
               damage, viability, and functionality during 3D bioprinting.   54.  Ouyang L, Highley CB, Rodell CB, Sun W, Burdick JA.
               Military Med Res. 2022;9(1):70.                    3D printing of shear-thinning hyaluronic acid hydrogels
               doi: 10.1186/s40779-022-00429-5
                                                                  with secondary cross-linking.  ACS Biomater Sci Eng.
            48.  Heidari  F,  Saadatmand M, Simorgh S. Directly coaxial   2016;2(10):1743-1751.
               bioprinting of 3D vascularized tissue using novel bioink      doi: 10.1021/acsbiomaterials.6b00158




































            Volume 10 Issue 4 (2024)                       262                                doi: 10.36922/ijb.2362
   265   266   267   268   269   270   271   272   273   274   275