Page 269 - IJB-10-4
P. 269
International Journal of Bioprinting Cell viability in printing structured inks
doi: 10.1088/1758-5090/abfd7a patterned heterogeneous tissue structures. Mater Design.
2023;227:111737.
19. Saroia J, Yanen W, Wei Q, Zhang K, Lu T, Zhang B. A review
on biocompatibility nature of hydrogels with 3D printing doi: 10.1016/j.matdes.2023.111737
techniques, tissue engineering application and its future 31. Kang D, Ahn G, Kim D, et al. Pre-set extrusion bioprinting
prospective. Bio-Des Manuf. 2018;1(4):265-279. for multiscale heterogeneous tissue structure fabrication.
doi: 10.1007/s42242-018-0029-7 Biofabrication. 2018;10(3):035008.
20. De France KJ, Xu F, Hoare T. Structured macroporous doi: 10.1088/1758-5090/aac70b
hydrogels: progress, challenges, and opportunities. Adv 32. Manoj Prabhakar M, Saravanan AK, Haiter Lenin A, Jerin
Healthc Mater. 2018;7(1):1700927. leno I, Mayandi K, Sethu Ramalingam P. A short review on
doi: 10.1002/adhm.201700927 3D printing methods, process parameters and materials.
21. Gun’ko VM, Savina IN, Mikhalovsky SV. Properties of water Mater Today Proc. 2021;45:6108-6114.
bound in hydrogels. Gels. 2017;3(4):37. doi: 10.1016/j.matpr.2020.10.225
doi: 10.3390/gels3040037 33. Ates G, Bartolo P. Computational fluid dynamics for the
22. Santoni S, Gugliandolo SG, Sponchioni M, Moscatelli D, optimization of internal bioprinting parameters and mixing
Colosimo BM. 3D bioprinting: current status and trends—a conditions. Int J Bioprinting. 2023;9(6):0219.
guide to the literature and industrial practice. Bio-Des doi: 10.36922/ijb.0219
Manuf. 2022;5(1):14-42. 34. Samandari M, Alipanah F, Majidzadeh-A K, Alvarez
doi: 10.1007/s42242-021-00165-0 MM, Santiago GT, Tamayol A. Controlling cellular
23. Shao L, Gao Q, Xie C, et al. Sacrificial microgel-laden organization in bioprinting through designed
bioink-enabled 3D bioprinting of mesoscale pore networks. 3D microcompartmentalization. Appl Phys Rev.
Bio-Des Manuf. 2020;3(1):30-39. 2021;8(2):021404.
doi: 10.1007/s42242-020-00062-y doi: 10.1063/5.0040732
24. Nikolopoulos VK, Augustine R, Camci-Unal G. Harnessing 35. Gao Q, Liu Z, Lin Z, et al. 3D bioprinting of vessel-like
the potential of oxygen-generating materials and their structures with multilevel fluidic channels. ACS Biomater
utilization in organ-specific delivery of oxygen. Biomater Sci Eng. 2017;3(3):399-408.
Sci. 2023;11(5):1567-1588. doi: 10.1021/acsbiomaterials.6b00643
doi: 10.1039/D2BM01329K 36. Kang D, Hong G, An S, et al. Bioprinting of multiscaled
25. Ouyang L, Wojciechowski JP, Tang J, Guo Y, Stevens hepatic lobules within a highly vascularized construct.
MM. Tunable microgel‐templated porogel (MTP) bioink Small. 2020;16(13):1905505.
for 3D bioprinting applications. Adv Healthc Mater. doi: 10.1002/smll.201905505
2022;11(8):2200027. 37. Ershkov SV, Prosviryakov EY, Burmasheva NV, Christianto
doi: 10.1002/adhm.202200027 V. Towards understanding the algorithms for solving the
26. Wang X, Yang C, Yu Y, Zhao Y. In situ 3D bioprinting living Navier–Stokes equations. Fluid Dyn Res. 2021;53(4):044501.
photosynthetic scaffolds for autotrophic wound healing. doi: 10.1088/1873-7005/ac10f0
Research. 2022;2022:1-11. 38. Zhang X, Kim GJ, Kang MG, et al. Marine biomaterial-based
doi: 10.34133/2022/9794745 bioinks for generating 3D printed tissue constructs. Mar
27. Blaeser A, Duarte Campos DF, Puster U, Richtering W, Drugs. 2018;16(12):484.
Stevens MM, Fischer H. Controlling shear stress in 3D doi: 10.3390/md16120484
bioprinting is a key factor to balance printing resolution and 39. Chand R, Muhire BS, Vijayavenkataraman S. Computational
stem cell integrity. Adv Healthc Mater. 2016;5(3):326-333. fluid dynamics assessment of the effect of bioprinting
doi: 10.1002/adhm.201500677 parameters in extrusion bioprinting. Int J Bioprinting.
28. Wang P, Sun Y, Ma Z, Diao L, Liu H, Shastri VP. Novel 2022;8(2):545.
stirring-rod-inspired mixer-integrated printhead for doi: 10.18063/ijb.v8i2.545
fabricating gradient tissue structures. Mater Design. 40. Caccavo D, Cascone S, Lamberti G, Barba AA. Hydrogels:
2023;229:111866. experimental characterization and mathematical modelling
doi: 10.1016/j.matdes.2023.111866
of their mechanical and diffusive behaviour. Chem Soc Rev.
29. Ouyang L. Pushing the rheological and mechanical 2018;47(7):2357-2373.
boundaries of extrusion-based 3D bioprinting. Trends doi: 10.1039/C7CS00638A
Biotechnol. 2022;40(7):891-902. 41. Gutierrez RA, Crumpler ET. Potential effect of geometry on
doi: 10.1016/j.tibtech.2022.01.001
wall shear stress distribution across scaffold surfaces. Ann
30. Wang P, Sun Y, Li D, et al. Extrusion-based 3D co-printing: Biomed Eng. 2008;36(1):77-85.
printing material design and novel workflow for fabricating doi: 10.1007/s10439-007-9396-5
Volume 10 Issue 4 (2024) 261 doi: 10.36922/ijb.2362

