Page 269 - IJB-10-4
P. 269

International Journal of Bioprinting                                   Cell viability in printing structured inks




               doi: 10.1088/1758-5090/abfd7a                      patterned heterogeneous tissue structures.  Mater Design.
                                                                  2023;227:111737.
            19.  Saroia J, Yanen W, Wei Q, Zhang K, Lu T, Zhang B. A review
               on biocompatibility nature of hydrogels with 3D printing      doi: 10.1016/j.matdes.2023.111737
               techniques, tissue engineering application and its future   31.  Kang D, Ahn G, Kim D, et al. Pre-set extrusion bioprinting
               prospective. Bio-Des Manuf. 2018;1(4):265-279.     for multiscale heterogeneous tissue structure fabrication.
               doi: 10.1007/s42242-018-0029-7                     Biofabrication. 2018;10(3):035008.
            20.  De France KJ, Xu F, Hoare T. Structured macroporous      doi: 10.1088/1758-5090/aac70b
               hydrogels: progress, challenges, and opportunities.  Adv   32.  Manoj Prabhakar M, Saravanan AK, Haiter Lenin A, Jerin
               Healthc Mater. 2018;7(1):1700927.                  leno I, Mayandi K, Sethu Ramalingam P. A short review on
               doi: 10.1002/adhm.201700927                        3D printing methods, process parameters and materials.
            21.  Gun’ko VM, Savina IN, Mikhalovsky SV. Properties of water   Mater Today Proc. 2021;45:6108-6114.
               bound in hydrogels. Gels. 2017;3(4):37.            doi: 10.1016/j.matpr.2020.10.225
               doi: 10.3390/gels3040037                        33.  Ates G, Bartolo P. Computational fluid dynamics for the
            22.  Santoni S, Gugliandolo SG, Sponchioni M, Moscatelli D,   optimization of internal bioprinting parameters and mixing
               Colosimo BM. 3D bioprinting: current status and trends—a   conditions. Int J Bioprinting. 2023;9(6):0219.
               guide  to  the  literature  and  industrial  practice.  Bio-Des      doi: 10.36922/ijb.0219
               Manuf. 2022;5(1):14-42.                         34.  Samandari  M,  Alipanah  F,  Majidzadeh-A  K,  Alvarez
               doi: 10.1007/s42242-021-00165-0                    MM, Santiago GT, Tamayol  A. Controlling cellular
            23.  Shao L, Gao Q, Xie C, et al. Sacrificial microgel-laden   organization  in  bioprinting  through  designed
               bioink-enabled 3D bioprinting of mesoscale pore networks.   3D  microcompartmentalization.  Appl  Phys  Rev.
               Bio-Des Manuf. 2020;3(1):30-39.                    2021;8(2):021404.
               doi: 10.1007/s42242-020-00062-y                    doi: 10.1063/5.0040732
            24.  Nikolopoulos VK, Augustine R, Camci-Unal G. Harnessing   35.  Gao Q, Liu Z, Lin Z, et al. 3D bioprinting of vessel-like
               the potential of oxygen-generating materials and their   structures with multilevel fluidic channels.  ACS Biomater
               utilization in organ-specific delivery of oxygen.  Biomater   Sci Eng. 2017;3(3):399-408.
               Sci. 2023;11(5):1567-1588.                         doi: 10.1021/acsbiomaterials.6b00643
               doi: 10.1039/D2BM01329K                         36.  Kang D, Hong G, An S, et al. Bioprinting of multiscaled
            25.  Ouyang L, Wojciechowski JP, Tang J, Guo Y, Stevens   hepatic lobules within a highly vascularized construct.
               MM. Tunable microgel‐templated porogel (MTP) bioink   Small. 2020;16(13):1905505.
               for 3D bioprinting applications.  Adv Healthc Mater.      doi: 10.1002/smll.201905505
               2022;11(8):2200027.                             37.  Ershkov SV, Prosviryakov EY, Burmasheva NV, Christianto
               doi: 10.1002/adhm.202200027                        V. Towards understanding the algorithms for solving the
            26.  Wang X, Yang C, Yu Y, Zhao Y. In situ 3D bioprinting living   Navier–Stokes equations. Fluid Dyn Res. 2021;53(4):044501.
               photosynthetic scaffolds for autotrophic wound healing.      doi: 10.1088/1873-7005/ac10f0
               Research. 2022;2022:1-11.                       38.  Zhang X, Kim GJ, Kang MG, et al. Marine biomaterial-based
               doi: 10.34133/2022/9794745                         bioinks for  generating 3D  printed tissue constructs.  Mar
            27.  Blaeser  A, Duarte  Campos  DF,  Puster  U,  Richtering  W,   Drugs. 2018;16(12):484.
               Stevens MM, Fischer  H. Controlling shear stress in 3D      doi: 10.3390/md16120484
               bioprinting is a key factor to balance printing resolution and   39.  Chand R, Muhire BS, Vijayavenkataraman S. Computational
               stem cell integrity. Adv Healthc Mater. 2016;5(3):326-333.  fluid dynamics assessment of the effect of bioprinting
               doi: 10.1002/adhm.201500677                        parameters in extrusion bioprinting.  Int J Bioprinting.
            28.  Wang  P,  Sun  Y,  Ma  Z,  Diao  L,  Liu  H,  Shastri  VP.  Novel   2022;8(2):545.
               stirring-rod-inspired mixer-integrated printhead for      doi: 10.18063/ijb.v8i2.545
               fabricating  gradient  tissue  structures.  Mater Design.   40.  Caccavo D, Cascone S, Lamberti G, Barba AA. Hydrogels:
               2023;229:111866.                                   experimental characterization and mathematical modelling
               doi: 10.1016/j.matdes.2023.111866
                                                                  of their mechanical and diffusive behaviour. Chem Soc Rev.
            29.  Ouyang L. Pushing the rheological and mechanical   2018;47(7):2357-2373.
               boundaries of extrusion-based 3D bioprinting.  Trends      doi: 10.1039/C7CS00638A
               Biotechnol. 2022;40(7):891-902.                 41.  Gutierrez RA, Crumpler ET. Potential effect of geometry on
               doi: 10.1016/j.tibtech.2022.01.001
                                                                  wall shear stress distribution across scaffold surfaces. Ann
            30.  Wang P, Sun Y, Li D, et al. Extrusion-based 3D co-printing:   Biomed Eng. 2008;36(1):77-85.
               printing material design and novel workflow for fabricating      doi: 10.1007/s10439-007-9396-5


            Volume 10 Issue 4 (2024)                       261                                doi: 10.36922/ijb.2362
   264   265   266   267   268   269   270   271   272   273   274