Page 341 - IJB-10-4
P. 341

International Journal of Bioprinting                                  3D bioprinting of composite hydrogels




               doi: 10.4103/DLJO.DLJO_163_23                      engineering with tunable printability and bioactivity. J Appl
                                                                  Polym Sci. 2022;139(36):e52833.
            2.   He B, Wang J, Xie M, et al. 3D printed biomimetic epithelium/
               stroma bilayer hydrogel implant for corneal regeneration.      doi: 10.1002/app.52833
               Bioact Mater. 2022;17:234-247.                  15.  Khoshnood N, Zamanian A, Abbasi M. The potential impact
               doi: 10.1016/j.bioactmat.2022.01.034               of polyethylenimine on biological behavior of 3D-printed
                                                                  alginate scaffolds. Int J Biol Macromol. 2021;178:19-28.
            3.   Hancox Z, Keshel SH, Yousaf S, et al. The progress in corneal
               translational medicine. Biomater Sci. 2020;8(23):6469-6504.     doi: 10.1016/j.ijbiomac.2021.02.152
               doi: 10.1039/D0BM01209B.                        16.  Agostinacchio F, Fitzpatrick V, Dirè S, Kaplan DL, Motta A.
                                                                  Silk fibroin-based inks for in situ 3D printing using a double
            4.   Nosrati H, Abpeikar Z, Mahmoudian ZG, et al.  Corneal
               epithelium tissue engineering: recent advances in   crosslinking process. Bioact Mater. 2024;35:122-134.
               regeneration  and  replacement  of  corneal  surface.  Regen      doi: 10.1016/j.bioactmat.2024.01.015
               Med. 2020;15(8):2029-2044.                      17.  Moreddu R, Vigolo D, Yetisen AK. Contact lens technology:
               doi: 10.2217/rme-2019-0055                         from fundamentals to applications.  Adv Healthc Mater.
                                                                  2019;8(15):e1900368.
            5.   Luo X, He X, Zhao H, et al. Research progress of polymer
               biomaterials as scaffolds for corneal endothelium tissue      doi: 10.1002/adhm.201900368
               engineering. Nanomaterials (Basel). 2023;13(13):1976.  18.  Alam F, Elsherif M, AlQattan B, et al. Prospects for additive
               doi: 10.3390/nano13131976                          manufacturing in contact lens devices.  Adv Eng Mater.
                                                                  2021;23(1):2000941.
            6.   Hao Y, Zhou J, Tan J, et al. Preclinical evaluation of the safety
               and effectiveness of a new bioartificial cornea. Bioact Mater.      doi: 10.1002/adem.202000941
               2023;29:265-278.                                19.  Grönroos P, Mörö A, Puistola P, et al. Bioprinting of human
               doi: 10.1016/j.bioactmat.2023.07.005               pluripotent stem cell derived corneal endothelial cells with
                                                                  hydrazone crosslinked hyaluronic acid bioink. Stem Cell Res
            7.   Fuest M, Yam GH-F, Mehta JS, Duarte Campos DF. Prospects
               and challenges of translational corneal bioprinting.   Ther. 2024;15(1):81.
               Bioengineering (Basel). 2020;7(3):71.              doi: 10.1186/s13287-024-03672-w
               doi: 10.3390/bioengineering7030071              20.  Khoshnood N, Zamanian A. Development of novel
                                                                  alginate-polyethyleneimine cell-laden  bioink  designed  for
            8.   Zhang B, Xue Q, Li J, et al. 3D bioprinting for artificial cornea:
               challenges and perspectives. Med Eng Phys. 2019;71:68-78.  3D bioprinting of cutaneous wound healing scaffolds. J Appl
               doi: 10.1016/j.medengphy.2019.05.002               Polym Sci. 2022;139(21):1-18.
                                                                  doi: 10.1002/app.52227
            9.   Holland G, Pandit A, Sánchez-Abella L, et al. Artificial
               cornea: past, current, and future directions.  Front Med   21.  Khoshnood N, Shahrezayee MH, Shahrezayee M, Shams
               (Lausanne). 2021;8:1-19.                           A, Zamanian A. Biological study of polyethyleneimine
               doi: 10.3389/fmed.2021.770780                      functionalized polycaprolactone 3D‐printed scaffolds
                                                                  for bone tissue engineering.  J Appl Polym Sci.
            10.  Xue Q, Ma L, Hu H, et al. 3D bioprinting as a prospective   2022;139(29):e52628.
               therapeutic strategy for corneal limbal epithelial stem cell      doi: 10.1002/app.52628
               deficiency. Int J Bioprint. 2023;9(3):710.
               doi: 10.18063/ijb.710                           22.  Shin J, Chung H, Kumar H, et al. 3D bioprinting of
                                                                  human  iPSC-Derived  kidney  organoids  using  a  low-cost,
            11.  Mahdavi SS, Abdekhodaie MJ, Mashayekhan S, Baradaran-  high-throughput customizable 3D bioprinting system.
               Rafii A, Djalilian AR. Bioengineering approaches for   Bioprinting. 2024;38:e00337.
               corneal regenerative medicine.  Tissue  Eng  Regen  Med.      doi: 10.1016/j.bprint.2024.e00337
               2020;17(5):567-593.
               doi: 10.1007/s13770-020-00262-8                 23.  Khoshnood N, Frampton JP, Zaree SRA, et al. The corrosion
                                                                  and biological behavior of 3D-printed polycaprolactone/
            12.  Haghighizadeh E, Shahrezaee M, Sharifzadeh SR, Momeni   chitosan scaffolds as protective coating for Mg alloy
               M. Transforming growth factor-β3 relation with osteoporosis   implants. Surf Coatings Technol. 2024;477:130368.
               and osteoporotic fractures. J Res Med Sci. 2019;24:46.     doi: 10.1016/j.surfcoat.2023.130368
               doi: 10.4103/jrms.JRMS_1062_18
                                                               24.  Khoshnood  N,  Zamanian  A.  Decellularized  extracellular
            13.  Norouzi M, Naderi MN, Komasi MH, et al. Clinical results   matrix bioinks and their application in skin tissue
               of using the proximal humeral internal locking system plate   engineering. Bioprinting. 2020;20:1-9.
               for internal fixation of displaced proximal humeral fractures.      doi: 10.1016/j.bprint.2020.e00095
               Am J Orthop (Belle Mead NJ). 2012;41(5):E64-E68.
                                                               25.  Pal P, Sambhakar S, Paliwal S, Kumar S, Kalsi V. Biofabrication
            14.  Khoshnood N, Shahrezaee MH, Shahrezaee M, Zamanian   paradigms in corneal regeneration: bridging bioprinting
               A.  Three‐dimensional  bioprinting  of  tragacanth/  techniques, natural bioinks, and stem cell therapeutics.  J
               hydroxyapaptite modified alginate bioinks for bone tissue   Biomater Sci Polym Ed. 2024;35(5):717-755.

            Volume 10 Issue 4 (2024)                       333                                doi: 10.36922/ijb.3440
   336   337   338   339   340   341   342   343   344   345   346