Page 342 - IJB-10-4
P. 342

International Journal of Bioprinting                                   3D bioprinting of composite hydrogels




               doi: 10.1080/09205063.2024.2301817              37.  Caffin F, Boccara D, Piérard C. The use of hydrogel
                                                                  dressings in sulfur mustard-induced skin and ocular wound
            26.  Puistola P, Miettinen S, Skottman H, Mörö A. Novel strategy
               for multi-material 3D bioprinting of human stem cell based   management. Biomedicines. 2023;11(6):1626.
               corneal stroma with heterogenous design. Mater Today Bio.      doi: 10.3390/biomedicines11061626
               2024;24:100924.                                 38.  Silva B, São Braz B, Delgado E, Gonçalves L. Colloidal
               doi: 10.1016/j.mtbio.2023.100924                   nanosystems with mucoadhesive properties designed for
                                                                  ocular topical delivery. Int J Pharm. 2021;606:120873.
            27.  Khoshnood N, Zamanian A. A comprehensive review
               on scaffold-free bioinks for bioprinting.  Bioprinting.      doi: 10.1016/j.ijpharm.2021.120873
               2020;19:e00088.                                 39.  Mishra A, Shaima KA, Sindhu RK. Novel drug delivery
               doi: 10.1016/j.bprint.2020.e00088                  system for ocular target. In: Rakesh K. Sindhu, eds.
                                                                  Nanotechnology and Drug Delivery; 2024:205-249. eBook
            28.  Boularaoui S, Al Hussein G, Khan KA, Christoforou N,
               Stefanini C. An overview of extrusion-based bioprinting   ISBN:9781003430407
               with a focus on induced shear stress and its effect on cell      doi: 10.1201/9781003430407-6
               viability. Bioprinting. 2020;20:e00093.         40.  Shastri DH, Silva AC, Almeida H. Ocular delivery
               doi: 10.1016/j.bprint.2020.e00093                  of therapeutic proteins: a review.  Pharmaceutics.
                                                                  2023;15(1):205.
            29.  Ng WL, Huang X, Shkolnikov V, Suntornnond R, Yeong
               WY. Polyvinylpyrrolidone-based bioink: influence of bioink      doi: 10.3390/pharmaceutics15010205
               properties on printing performance and cell proliferation   41.  Gholamali  I,  Yadollahi  M.  Doxorubicin-loaded
               during inkjet-based bioprinting.  Bio-Design Manuf.   carboxymethyl  cellulose/Starch/ZnO  nanocomposite
               2023;6(2):676-690.                                 hydrogel beads as an anticancer drug carrier agent. Int J Biol
               doi: 10.1007/s42242-023-00245-3                    Macromol. 2020;160:724-735.
                                                                  doi: 10.1016/j.ijbiomac.2020.05.232
            30.  Chartrain NA, Williams CB, Whittington AR. A review on
               fabricating tissue scaffolds using vat photopolymerization.   42.  Gabai A, Zeppieri M, Finocchio L, Salati C. Innovative
               Acta Biomater. 2018;74:90-111.                     strategies for drug delivery to the ocular posterior segment.
               doi: 10.1016/j.actbio.2018.05.010                  Pharmaceutics. 2023;15(7):1862.
                                                                  doi: 10.3390/pharmaceutics15071862
            31.  Cui X, Li J, Hartanto Y, et al. Advances in extrusion 3D
               bioprinting: a focus on multicomponent hydrogel‐based   43.  Du Y, Sun J, Wang L, et al. Development of antimicrobial
               bioinks. Adv Healthc Mater. 2020;9(15):1901648.    packaging materials by incorporation of gallic acid into
               doi: 10.1002/adhm.201901648                        Ca2+ crosslinking konjac glucomannan/gellan gum films.
                                                                  Int J Biol Macromol. 2019;137:1076-1085.
            32.  Duarte Campos DF, Rohde M, Ross M, et al. Corneal
               bioprinting  utilizing  collagen‐based  bioinks  and     doi: 10.1016/j.ijbiomac.2019.06.079
               primary human keratocytes.  J  Biomed  Mater  Res  Part  A.   44.  Lalebeigi F, Alimohamadi A, Afarin S, et al. Recent advances
               2019;107(9):1945-1953.                             on biomedical applications of gellan gum: a review.
               doi: 10.1002/jbm.a.36702                           Carbohydr Polym. 2024;334:122008.
                                                                  doi: 10.1016/j.carbpol.2024.122008.
            33.  Mörö A, Samanta S, Honkamäki L, et al. Hyaluronic acid
               based next generation bioink for 3D bioprinting of human   45.  Modi  D,  Nirmal  J,  Warsi  MH,  et  al.  Formulation  and
               stem cell derived corneal stromal model with innervation.   development of tacrolimus-gellan gum nanoformulation for
               Biofabrication. 2022;15(1):15020.                  treatment of dry eye disease. Colloids Surf B Biointerfaces
               doi: 10.1088/1758-5090/acab34                      2022;211:112255.
                                                                  doi: 10.1016/j.colsurfb.2021.112255
            34.  Ulag S, Ilhan E, Sahin A, et al. 3D printed artificial
               cornea for corneal stromal transplantation.  Eur Polym J.   46.  Thekkila-Veedu S, Mohanan DP, Banerjee S, Ravichandiran
               2020;133:109744.                                   V, Natesan S. Natural biopolymers in ophthalmology. Nat
               doi: 10.1016/j.eurpolymj.2020.109744               Biopolym Drug Deliv Tissue Eng. 2023:369-405.
                                                                  doi: 10.1016/B978-0-323-98827-8.00002-3
            35.  Park J, Lee K, Kim H, et al. Biocompatibility evaluation of
               bioprinted decellularized collagen sheet implanted in vivo   47.  Gering C. Design Strategies for Polysaccharide Hydrogels
               cornea using swept‐source optical coherence tomography. J   Used in Soft Tissue Engineering: Modification, Testing and
               Biophotonics. 2019;12(11):e201900098.              Applications of Gellan Gum; 2023. eBook ISBN: 978-952-
               doi: 10.1002/jbio.201900098                        03-2901-3
            36.  Zheng Y, Zhai C-B. Performance of bandage contact lens in   48.  Kumar M, Jha A, Bharti K, Parmar G, Mishra B. Gelation
               patients post-ocular surgeries: a systematic literature review.   behavior in natural gums: fundamentals of solute–solvent
               Eye Contact Lens. 2023;49(11):449-458.             interaction to gel formation. Nat Gums. 2023;95-122.
               doi: 10.1097/ICL.0000000000001021                  doi: 10.1016/B978-0-323-99468-2.00004-8



            Volume 10 Issue 4 (2024)                       334                                doi: 10.36922/ijb.3440
   337   338   339   340   341   342   343   344   345   346   347