Page 372 - IJB-10-4
P. 372
International Journal of Bioprinting 3D-printed PEEK in cranioplasty
doi: 10.3390/ijms22168521 34. Feng P, Wu P, Gao C, et al. A multimaterial scaffold with
tunable properties: toward bone tissue repair. Adv Sci.
23. Thimukonda Jegadeesan J, Baldia M, Basu B. Next-
generation personalized cranioplasty treatment. Acta 2018;5(6):1700817.
Biomater. 2022;154:63-82. doi: 10.1002/advs.201700817
doi: 10.1016/j.actbio.2022.10.030 35. Zhao F, Li D, Jin Z. Preliminary investigation of poly-
ether-ether-ketone based on fused deposition modeling for
24. Zhao M, An M, Wang Q, et al. Quantitative proteomic analysis medical applications. Materials. 2018;11(2):288.
of human osteoblast-like MG-63 cells in response to bioinert doi: 10.3390/ma11020288
implant material titanium and polyetheretherketone. J
Proteomics. 2012;75:3560-3573. 36. Msallem B, Sharma N, Cao S, Halbeisen FS, Zeilhofer H-F,
doi: 10.1016/j.jprot.2012.03.033 Thieringer FM. Evaluation of the dimensional accuracy
of 3D-printed anatomical mandibular models using FFF,
25. Lee D-W, Yun Y-P, Park K, Kim SE. Gentamicin and bone SLA, SLS, MJ, and BJ printing technology. J Clin Med.
morphogenic protein-2 (BMP-2)-delivering heparinized- 2020;9(3):817.
titanium implant with enhanced antibacterial activity and doi: 10.3390/jcm9030817
osteointegration. Bone. 2012;50:974-982.
doi: 10.1016/j.bone.2012.01.007 37. Presciutti A, Gebennini E, Liberti F, Nanni F, Bragaglia M.
Comparative life cycle assessment of SLS and mFFF additive
26. Abshagen K, Schrodi I, Gerber T, Vollmar B. In vivo analysis manufacturing techniques for the production of a metal
of biocompatibility and vascularization of the synthetic specimen. Materials. 2023;17(1):78.
bone grafting substitute NanoBone. J Biomed Mater Res A. doi: 10.3390/ma17010078
2009;91:557-566.
doi: 10.1002/jbm.a.32237 38. Kafle A, Luis E, Silwal R, Pan HM, Shrestha PL, Bastola AK.
3D/4D printing of polymers: fused deposition modelling
27. Panayotov IV, Orti V, Cuisinier F, Yachouh J. (FDM), selective laser sintering (SLS), and stereolithography
Polyetheretherketone (PEEK) for medical applications. (SLA). Polymers. 2021;13(18):3101.
J Mater Sci Mater Med. 2016;27. doi: 10.3390/polym13183101
doi: 10.1007/s10856-016-5731-4
39. Kang J, Wang L, Yang C, et al. Custom design and
28. Wang Y, Wang J, Ji Z, et al. Application of bioprinting in biomechanical analysis of 3D-printed PEEK rib prostheses.
ophthalmology. Int J Bioprint. 2022;8(2):552. Biomech Model Mechanobiol. 2018;17(4):1083-1092.
doi: 10.18063/ijb.v8i2.552 doi: 10.1007/s10237-018-1015-x
29. Pu F, Yu Y, Zhang Z, et al. Research and application of 40. Alkhaibary A, Alharbi A, Alnefaie N, Almubarak AO,
medical polyetheretherketone as bone repair material. Aloraidi A, Khairy S. Cranioplasty: a comprehensive review
Macromol Biosci. 2023;23(9):e2300032. of the history, materials, surgical aspects, and complications.
doi: 10.1002/mabi.202300032 World Neurosurg. 2020;139:445-452.
30. Sun C, Kang J, Yang C, Zheng J. Additive manufactured doi: 10.1016/j.wneu.2020.04.211
polyether-ether-ketone implants for orthopaedic applications 41. Henry J, Amoo M, Taylor J, O’Brien DP. Complications
a narrative review. Biomater Transl. 2021;3(2):116-133. of cranioplasty in relation to material: systematic review,
doi: 10.12336/biomatertransl.2022.02.001 network meta-analysis and meta-regression. Neurosurgery.
31. Lalama M, Rocha MG, O’Neill E, Zoidis P. 2021;89(3):E144.
Polyetheretherketone (PEEK) post and core restorations: a doi: 10.1093/neuros/nyab216
3D accuracy analysis between heat-pressed and CAD-CAM 42. Shah AM, Jung H, Skirboll S. Materials used in cranioplasty:
fabrication methods. J Prosthodont. 2022;31(6):537-542. a history and analysis. Neurosurg Focus. 2014;36(4):E19.
doi: 10.1111/jopr.13452 doi: 10.3171/2014.2.FOCUS13561
32. Yang C, Tian X, Li D, Cao Y. Influence of thermal processing 43. Lee C-H, Chung YS, Lee SH, Yang H-J, Son Y-J. Analyses
conditions in 3D printing on the crystallinity and of the factors influencing bone graft infection after delayed
mechanical properties of PEEK material. J Mater Process cranioplasty. J Trauma Acute Care Surg. 2012;73(1):
Technol. 2017;248:1-7. 255-260.
doi: 10.1016/j.jmatprotec.2017.04.027 doi: 10.1097/TA.0b013e318256a150
33. Wang Y, Shen J, Yan M, Tian X. Poly ether ether ketone and 44. Kwarcinski J, Boughton P, Ruys A, Doolan A, Gelder JV.
its composite powder prepared by thermally induced phase Cranioplasty and craniofacial reconstruction: a review of
separation for high temperature selective laser sintering. implant material, manufacturing method and infection risk.
Mater Des. 2021;201:109510. Appl Sci. 2017;7.
doi: 10.1016/j.matdes.2021.109510 doi: 10.3390/app7030276
Volume 10 Issue 4 (2024) 364 doi: 10.36922/ijb.2583

