Page 451 - IJB-10-4
P. 451
International Journal of Bioprinting Improving ductility of 3D-printed Zn–Mg
21. Qin Y, Wen P, Guo H, et al. Additive manufacturing of degradation property of biodegradable Zn-3Mg alloy. Adv
biodegradable metals: current research status and future Mat Res. 2014;845:7-11.
perspectives. Acta Biomater. 2019;98:3-22. doi: 10.4028/www.scientific.net/AMR.845.7
doi: 10.1016/j.actbio.2019.04.046
33. Dambatta MS, Izman S, Hermawan H, Kurniawan D.
22. Gao C, Li C, Peng S, Shuai C. Spiral-eutectic-reinforced Effect of heat treatment on microstructure homogeneity
biodegradable Zn–Mg–Ag alloy prepared via selective of Zn-3Mg alloy. Appl Mech Mater. 2014;493:
laser melting. Chin J Mech Eng Addit Manuf Fron. 777-782.
2022;1(2):100022. doi: 10.4028/www.scientific.net/AMM.493.777
doi: 10.1016/j.cjmeam.2022.100022
34. Cui L, Zhang Z, Chen X. Microstructure and mechanical
23. Wang C, Hu Y, Zhong C, Lan C, Li W, Wang X. properties of novel Al–Cu–Mg–Zn lightweight entropy
Microstructural evolution and mechanical properties of alloys for elevated-temperature applications. Mater Charact.
pure Zn fabricated by selective laser melting. Mat Sci Eng: A. 2023;200:112927.
2022;846:143276. doi: 10.1016/j.matchar.2023.112927
doi: 10.1016/j.msea.2022.143276
35. Yang Y, Lu C, Shen L, Zhao Z, Peng S, Shuai C. In-situ
24. Liu J, Wen P. Metal vaporization and its influence during deposition of apatite layer to protect Mg-based composite
laser powder bed fusion process. Mater Des. 2022;215: fabricated via laser additive manufacturing. J Magnes Alloy.
110505. 2023;11(2):629-640.
doi: 10.1016/j.matdes.2022.110505 doi: 10.1016/j.jma.2021.04.009
25. Ning J, Ma Z, Zhang L, Wang D, Na S. Effects of magnesium 36. Parsons EM, Shaik SZ. Additive manufacturing of aluminum
on microstructure, properties and degradation behaviors of metal matrix composites: mechanical alloying of composite
zinc-based alloys prepared by selective laser melting. Mater powders and single track consolidation with laser powder
Res Express. 2022;9(8):086511. bed fusion. Addit Manuf. 2022;50:102450.
doi: 10.1088/2053-1591/ac88b7 doi: 10.1016/j.addma.2021.102450
26. Yang Y, Yuan F, Gao C, et al. A combined strategy to enhance 37. Bouabbou A, Vaudreuil S. Understanding laser-metal
the properties of Zn by laser rapid solidification and laser interaction in selective laser melting additive manufacturing
alloying. J Mech Behav Biomed Mater. 2018;82:51-60. through numerical modelling and simulation: a review.
doi: 10.1016/j.jmbbm.2018.03.018 Virtual Phys Prototyp. 2022;17(3):543-562.
doi: 10.1080/17452759.2022.2052488
27. Qin Y, Liu A, Guo H, et al. Additive manufacturing of Zn-
Mg alloy porous scaffolds with enhanced osseointegration: 38. Zheng YF, Gu XN, Witte F. Biodegradable metals. Mat Sci
in vitro and in vivo studies. Acta Biomater. 2022;145: Eng R. 2014;77:1-34.
403-415. doi: 10.1016/j.mser.2014.01.001
doi: 10.1016/j.actbio.2022.03.055
39. Ye L, Huang H, Sun C, et al. Effect of grain size and volume
28. Bai J, Xu Y, Fan Q, et al. Mechanical properties and fraction of eutectic structure on mechanical properties and
degradation behaviors of Zn-xMg alloy fine wires for corrosion behavior of as-cast Zn–Mg binary alloys. J Mater
biomedical applications. Scanning. 2021;2021:4831387. Res Technol. 2022;16:1673-1685.
doi: 10.1155/2021/4831387 doi: 10.1016/j.jmrt.2021.12.101
29. Dambatta MS, Izman S, Kurniawan D, Farahany S, Yahaya 40. Gao C, Li S, Liu L, et al. Dual alloying improves the corrosion
B, Hermawan H. Influence of thermal treatment on resistance of biodegradable Mg alloys prepared by selective
microstructure, mechanical and degradation properties of laser melting. J Magnes Alloy. 2021;9(1):305-316.
Zn–3Mg alloy as potential biodegradable implant material. doi: 10.1016/j.jma.2020.03.016
Mater Des. 2015;85:431-437. 41. Hosking NC, Ström MA, Shipway PH, Rudd CD. Corrosion
doi: 10.1016/j.matdes.2015.06.181
resistance of zinc–magnesium coated steel. Corros Sci.
30. Chua C, Sing SL, Chua CK. Characterisation of in-situ 2007;49(9):3669-3695.
alloyed titanium-tantalum lattice structures by laser powder doi: 10.1016/j.corsci.2007.03.032
bed fusion using finite element analysis. Virtual Phys 42. Prosek T, Thierry D, Taxén C, Maixner J. Effect of cations
Prototyp. 2023;18(1):e2138463. on corrosion of zinc and carbon steel covered with chloride
doi: 10.1080/17452759.2022.2138463
deposits under atmospheric conditions. Corros Sci.
31. Yao C, Wang Z, Tay SL, Zhu T, Gao W. Effects of Mg on 2007;49(6):2676-2693.
microstructure and corrosion properties of Zn–Mg alloy. doi: 10.1016/j.corsci.2006.11.004
J Alloys Compd. 2014;602:101-107. 43. Hausbrand R, Stratmann M, Rohwerder M. Corrosion
doi: 10.1016/j.jallcom.2014.03.025
of zinc–magnesium coatings: mechanism of paint
32. Dambatta MS, Izman S, Hermawan H, Kurniawan D. delamination. Corros Sci. 2009;51(9):2107-2114.
Influence of heat treatment cooling mediums on the doi: 10.1016/j.corsci.2009.05.042
Volume 10 Issue 4 (2024) 443 doi: 10.36922/ijb.3034

