Page 451 - IJB-10-4
P. 451

International Journal of Bioprinting                                 Improving ductility of 3D-printed Zn–Mg




            21.  Qin Y, Wen P, Guo H, et al. Additive manufacturing of   degradation property of biodegradable Zn-3Mg alloy. Adv
               biodegradable metals: current research status and future   Mat Res. 2014;845:7-11.
               perspectives. Acta Biomater. 2019;98:3-22.         doi: 10.4028/www.scientific.net/AMR.845.7
               doi: 10.1016/j.actbio.2019.04.046
                                                               33.  Dambatta MS, Izman S, Hermawan H, Kurniawan D.
            22.  Gao C, Li C, Peng S, Shuai C. Spiral-eutectic-reinforced   Effect of heat treatment on microstructure homogeneity
               biodegradable Zn–Mg–Ag alloy prepared via selective   of Zn-3Mg alloy.  Appl  Mech  Mater. 2014;493:
               laser melting.  Chin J Mech Eng Addit Manuf Fron.   777-782.
               2022;1(2):100022.                                  doi: 10.4028/www.scientific.net/AMM.493.777
               doi: 10.1016/j.cjmeam.2022.100022
                                                               34.  Cui L, Zhang Z, Chen X. Microstructure and mechanical
            23.  Wang C, Hu Y, Zhong C, Lan C, Li W, Wang X.      properties of novel Al–Cu–Mg–Zn lightweight entropy
               Microstructural evolution and mechanical properties of   alloys for elevated-temperature applications. Mater Charact.
               pure Zn fabricated by selective laser melting. Mat Sci Eng: A.   2023;200:112927.
               2022;846:143276.                                   doi: 10.1016/j.matchar.2023.112927
               doi: 10.1016/j.msea.2022.143276
                                                               35.  Yang Y, Lu C, Shen L, Zhao Z, Peng S, Shuai C. In-situ
            24.  Liu J, Wen P. Metal vaporization and its influence during   deposition of apatite layer to protect Mg-based composite
               laser powder bed fusion process.  Mater Des. 2022;215:   fabricated via laser additive manufacturing. J Magnes Alloy.
               110505.                                            2023;11(2):629-640.
               doi: 10.1016/j.matdes.2022.110505                  doi: 10.1016/j.jma.2021.04.009
            25.  Ning J, Ma Z, Zhang L, Wang D, Na S. Effects of magnesium   36.  Parsons EM, Shaik SZ. Additive manufacturing of aluminum
               on microstructure, properties and degradation behaviors of   metal matrix composites: mechanical alloying of composite
               zinc-based alloys prepared by selective laser melting. Mater   powders and single track consolidation with laser powder
               Res Express. 2022;9(8):086511.                     bed fusion. Addit Manuf. 2022;50:102450.
               doi: 10.1088/2053-1591/ac88b7                      doi: 10.1016/j.addma.2021.102450
            26.  Yang Y, Yuan F, Gao C, et al. A combined strategy to enhance   37.  Bouabbou A, Vaudreuil S. Understanding laser-metal
               the properties of Zn by laser rapid solidification and laser   interaction in selective laser melting additive manufacturing
               alloying. J Mech Behav Biomed Mater. 2018;82:51-60.   through  numerical  modelling and  simulation: a  review.
               doi: 10.1016/j.jmbbm.2018.03.018                   Virtual Phys Prototyp. 2022;17(3):543-562.
                                                                  doi: 10.1080/17452759.2022.2052488
            27.  Qin Y, Liu A, Guo H, et al. Additive manufacturing of Zn-
               Mg alloy porous scaffolds with enhanced osseointegration:   38.  Zheng YF, Gu XN, Witte F. Biodegradable metals. Mat Sci
               in vitro and in vivo studies.  Acta Biomater. 2022;145:   Eng R. 2014;77:1-34.
               403-415.                                           doi: 10.1016/j.mser.2014.01.001
               doi: 10.1016/j.actbio.2022.03.055
                                                               39.  Ye L, Huang H, Sun C, et al. Effect of grain size and volume
            28.  Bai J, Xu Y, Fan Q, et al. Mechanical properties and   fraction of eutectic structure on mechanical properties and
               degradation behaviors of Zn-xMg alloy fine wires for   corrosion behavior of as-cast Zn–Mg binary alloys. J Mater
               biomedical applications. Scanning. 2021;2021:4831387.   Res Technol. 2022;16:1673-1685.
               doi: 10.1155/2021/4831387                          doi: 10.1016/j.jmrt.2021.12.101
            29.  Dambatta MS, Izman S, Kurniawan D, Farahany S, Yahaya   40.  Gao C, Li S, Liu L, et al. Dual alloying improves the corrosion
               B, Hermawan H. Influence of thermal treatment on   resistance of biodegradable Mg alloys prepared by selective
               microstructure, mechanical and degradation properties of   laser melting. J Magnes Alloy. 2021;9(1):305-316.
               Zn–3Mg alloy as potential biodegradable implant material.      doi: 10.1016/j.jma.2020.03.016
               Mater Des. 2015;85:431-437.                     41.  Hosking NC, Ström MA, Shipway PH, Rudd CD. Corrosion
               doi: 10.1016/j.matdes.2015.06.181
                                                                  resistance of zinc–magnesium coated steel.  Corros Sci.
            30.  Chua  C,  Sing  SL,  Chua  CK.  Characterisation  of  in-situ   2007;49(9):3669-3695.
               alloyed titanium-tantalum lattice structures by laser powder      doi: 10.1016/j.corsci.2007.03.032
               bed fusion using finite element analysis.  Virtual Phys   42.  Prosek T, Thierry D, Taxén C, Maixner J. Effect of cations
               Prototyp. 2023;18(1):e2138463.                     on corrosion of zinc and carbon steel covered with chloride
               doi: 10.1080/17452759.2022.2138463
                                                                  deposits under atmospheric conditions.  Corros Sci.
            31.  Yao C, Wang Z, Tay SL, Zhu T, Gao W. Effects of Mg on   2007;49(6):2676-2693.
               microstructure and corrosion properties of Zn–Mg alloy.       doi: 10.1016/j.corsci.2006.11.004
               J Alloys Compd. 2014;602:101-107.               43.  Hausbrand R, Stratmann M, Rohwerder M. Corrosion
               doi: 10.1016/j.jallcom.2014.03.025
                                                                  of zinc–magnesium coatings: mechanism of paint
            32.  Dambatta MS, Izman S, Hermawan H, Kurniawan D.   delamination. Corros Sci. 2009;51(9):2107-2114.
               Influence  of  heat  treatment  cooling  mediums  on  the      doi: 10.1016/j.corsci.2009.05.042

            Volume 10 Issue 4 (2024)                       443                                doi: 10.36922/ijb.3034
   446   447   448   449   450   451   452   453   454   455   456