Page 450 - IJB-10-4
P. 450
International Journal of Bioprinting Improving ductility of 3D-printed Zn–Mg
Consent for publication doi: 10.1016/j.msec.2019.01.120
Not applicable. 10. Yang H, Jia B, Zhang Z, et al. Alloying design of
biodegradable zinc as promising bone implants for load-
Availability of data bearing applications. Nat Commun. 2020;11(1):401.
doi: 10.1038/s41467-019-14153-7
Not applicable. 11. Su Y, Cockerill I, Wang Y, et al. Zinc-based biomaterials for
regeneration and therapy. Trends Biotechnol. 2019;37(4):
References 428-441.
doi: 10.1016/j.tibtech.2018.10.009
1. Zhao D, Yu K, Sun T, et al. Material–structure–function
integrated additive manufacturing of degradable metallic 12. Ran Z, Wang Y, Li J, et al. 3D-printed biodegradable
bone implants for load‐bearing applications. Adv Funct magnesium alloy scaffolds with zoledronic acid-loaded
Mater. 2023;33(16):2213128. ceramic composite coating promote osteoporotic bone
doi: 10.1002/adfm.202213128 defect repair. Int J Bioprint. 2023;9(5):769.
doi: 10.18063/ijb.769
2. Li H, Wang P, Lin G, Huang J. The role of rare earth elements
in biodegradable metals: a review. Acta Biomater. 2021;129: 13. Venezuela J, Dargusch MS. The influence of alloying and
33-42. fabrication techniques on the mechanical properties,
doi: 10.1016/j.actbio.2021.05.014 biodegradability and biocompatibility of zinc: a
comprehensive review. Acta Biomater. 2019;87:1-40.
3. Shuai C, Zhong S, Shuai Y, Yang W, Peng S, He C. Accelerated doi: 10.1016/j.actbio.2019.01.035
anode and cathode reaction due to direct electron uptake
and consumption by manganese dioxide and titanium 14. Kubásek J, Vojtěch D, Jablonská E, Pospíšilová I, Lipov J,
dioxide composite cathode in degradation of iron composite. Ruml T. Structure, mechanical characteristics and in vitro
J Colloid Interface Sci. 2023;632(Pt A):95-107. degradation, cytotoxicity, genotoxicity and mutagenicity of
doi: 10.1016/j.jcis.2022.11.055 novel biodegradable Zn–Mg alloys. Mat Sci Eng C-Mater.
2016;58:24-35.
4. Ling C, Li Q, Zhang Z, et al. Influence of heat treatment doi: 10.1016/j.msec.2015.08.015
on microstructure, mechanical and corrosion behavior of
WE43 alloy fabricated by laser-beam powder bed fusion. Int 15. Kubásek J, Vojtěch D, Pospíšilová I, Michalcová A,
J Extreme Manuf. 2023;6(1):015001. Maixner J. Microstructure and mechanical properties of
doi: 10.1088/2631-7990/acfad5 the micrograined hypoeutectic Zn–Mg alloy. Int J Min Met
Mater. 2016;23:1167-1176.
5. Yang Y, Ling C, Li Y, et al. Microstructure development doi: 10.1007/s12613-016-1336-7
and biodegradation behavior of additively manufactured
Mg-Zn-Gd alloy with LPSO structure. J Mater Sci Technol. 16. Dong Z, Han C, Zhao Y, et al. Role of heterogenous
2023;144:1-14. microstructure and deformation behavior in achieving
doi: 10.1016/j.jmst.2022.09.059 superior strength-ductility synergy in zinc fabricated via laser
powder bed fusion. Int J Extreme Manuf. 2024;6(4):045003
6. Zhou Y, Wang J, Yang Y, et al. Laser additive manufacturing do: 10.1088/2631-7990/ad3929
of zinc targeting for biomedical application. Int J Bioprint.
2022;8(1):501. 17. Shuai C, Li D, Yao X, Li X, Gao C. Additive manufacturing
doi: 10.18063/ijb.v8i1.501 of promising heterostructure for biomedical applications.
Int J Extreme Manuf. 2023;5:032012.
7. Kabir H, Munir K, Wen C, Li Y. Recent research and progress doi: 10.1088/2631-7990/acded2
of biodegradable zinc alloys and composites for biomedical
applications: biomechanical and biocorrosion perspectives. 18. Zhao D, Han C, Peng B, et al. Corrosion fatigue behavior
Bioact Mater. 2021;6(3):836-879. and anti-fatigue mechanisms of an additively manufactured
doi: 10.1016/j.bioactmat.2020.09.013 biodegradable zinc-magnesium gyroid scaffold. Acta
Biomater. 2022;153:614-629.
8. Xiao C, Wang L, Ren Y, et al. Indirectly extruded doi: 10.1016/j.actbio.2022.09.047
biodegradable Zn-0.05 wt% Mg alloy with improved
strength and ductility: in vitro and in vivo studies. J Mater 19. Zhou K, Han C. Metal Powder-Based Additive Manufacturing.
Sci Technol. 2018;34(9):1618-1627. John Wiley & Sons; 2023.
doi: 10.1016/j.jmst.2018.01.006 doi: 10.1002/9783527822249.ch1
9. Zhang Y, Yan Y, Xu X, et al. Investigation on the 20. Bandyopadhyay A, Ciliveri S, Guariento S, Zuckschwerdt
microstructure, mechanical properties, in vitro degradation N, Hogg WW. Fatigue behavior of additively manufactured
behavior and biocompatibility of newly developed Zn-0.8% Ti3Al2V alloy. Mater Sci Addit Manuf. 2023;2(3):
Li-(Mg, Ag) alloys for guided bone regeneration. Mater Sci 1705.
Eng C. 2019;99:1021-1034. doi: 10.36922/msam.1705
Volume 10 Issue 4 (2024) 442 doi: 10.36922/ijb.3034

