Page 450 - IJB-10-4
P. 450

International Journal of Bioprinting                                 Improving ductility of 3D-printed Zn–Mg




            Consent for publication                               doi: 10.1016/j.msec.2019.01.120
            Not applicable.                                    10.  Yang H, Jia B, Zhang Z, et al. Alloying design of
                                                                  biodegradable zinc as promising bone implants for load-
            Availability of data                                  bearing applications. Nat Commun. 2020;11(1):401.
                                                                  doi: 10.1038/s41467-019-14153-7
            Not applicable.                                    11.  Su Y, Cockerill I, Wang Y, et al. Zinc-based biomaterials for
                                                                  regeneration and therapy.  Trends Biotechnol. 2019;37(4):
            References                                            428-441.
                                                                  doi: 10.1016/j.tibtech.2018.10.009
            1.   Zhao D, Yu K, Sun T, et al. Material–structure–function
               integrated additive manufacturing of degradable metallic   12.  Ran Z, Wang Y, Li J, et al. 3D-printed biodegradable
               bone  implants for  load‐bearing applications.  Adv Funct   magnesium alloy scaffolds with zoledronic acid-loaded
               Mater. 2023;33(16):2213128.                        ceramic composite coating promote osteoporotic bone
               doi: 10.1002/adfm.202213128                        defect repair. Int J Bioprint. 2023;9(5):769.
                                                                  doi: 10.18063/ijb.769
            2.   Li H, Wang P, Lin G, Huang J. The role of rare earth elements
               in biodegradable metals: a review. Acta Biomater. 2021;129:   13.  Venezuela J, Dargusch MS. The influence of alloying and
               33-42.                                             fabrication techniques on the mechanical properties,
               doi: 10.1016/j.actbio.2021.05.014                  biodegradability and biocompatibility of zinc: a
                                                                  comprehensive review. Acta Biomater. 2019;87:1-40.
            3.   Shuai C, Zhong S, Shuai Y, Yang W, Peng S, He C. Accelerated      doi: 10.1016/j.actbio.2019.01.035
               anode and cathode reaction due to direct electron uptake
               and consumption by manganese dioxide and titanium   14.  Kubásek J, Vojtěch D, Jablonská E, Pospíšilová I, Lipov J,
               dioxide composite cathode in degradation of iron composite.   Ruml T. Structure, mechanical characteristics and in vitro
               J Colloid Interface Sci. 2023;632(Pt A):95-107.    degradation, cytotoxicity, genotoxicity and mutagenicity of
               doi: 10.1016/j.jcis.2022.11.055                    novel biodegradable Zn–Mg alloys. Mat Sci Eng C-Mater.
                                                                  2016;58:24-35.
            4.   Ling C, Li Q, Zhang Z, et al. Influence of heat treatment      doi: 10.1016/j.msec.2015.08.015
               on microstructure, mechanical and corrosion behavior of
               WE43 alloy fabricated by laser-beam powder bed fusion. Int   15.  Kubásek  J,  Vojtěch  D,  Pospíšilová  I,  Michalcová  A,
               J Extreme Manuf. 2023;6(1):015001.                 Maixner J. Microstructure and mechanical properties of
               doi: 10.1088/2631-7990/acfad5                      the micrograined hypoeutectic Zn–Mg alloy. Int J Min Met
                                                                  Mater. 2016;23:1167-1176.
            5.   Yang Y, Ling C, Li Y, et al. Microstructure development      doi: 10.1007/s12613-016-1336-7
               and biodegradation behavior of additively manufactured
               Mg-Zn-Gd alloy with LPSO structure. J Mater Sci Technol.   16.  Dong Z, Han C, Zhao Y, et al. Role of heterogenous
               2023;144:1-14.                                     microstructure and deformation behavior in achieving
               doi: 10.1016/j.jmst.2022.09.059                    superior strength-ductility synergy in zinc fabricated via laser
                                                                  powder bed fusion. Int J Extreme Manuf. 2024;6(4):045003
            6.   Zhou Y, Wang J, Yang Y, et al. Laser additive manufacturing   do: 10.1088/2631-7990/ad3929
               of zinc targeting for biomedical application. Int J Bioprint.
               2022;8(1):501.                                  17.  Shuai C, Li D, Yao X, Li X, Gao C. Additive manufacturing
               doi: 10.18063/ijb.v8i1.501                         of  promising  heterostructure  for  biomedical  applications.
                                                                  Int J Extreme Manuf. 2023;5:032012.
            7.   Kabir H, Munir K, Wen C, Li Y. Recent research and progress      doi: 10.1088/2631-7990/acded2
               of biodegradable zinc alloys and composites for biomedical
               applications: biomechanical and biocorrosion perspectives.   18.  Zhao D, Han C, Peng B, et al. Corrosion fatigue behavior
               Bioact Mater. 2021;6(3):836-879.                   and anti-fatigue mechanisms of an additively manufactured
               doi: 10.1016/j.bioactmat.2020.09.013               biodegradable zinc-magnesium gyroid scaffold.  Acta
                                                                  Biomater. 2022;153:614-629.
            8.   Xiao C, Wang L, Ren Y, et al. Indirectly extruded      doi: 10.1016/j.actbio.2022.09.047
               biodegradable Zn-0.05 wt% Mg alloy with improved
               strength and ductility: in vitro and in vivo studies. J Mater   19.  Zhou K, Han C. Metal Powder-Based Additive Manufacturing.
               Sci Technol. 2018;34(9):1618-1627.                 John Wiley & Sons; 2023.
               doi: 10.1016/j.jmst.2018.01.006                    doi: 10.1002/9783527822249.ch1
            9.   Zhang Y, Yan Y, Xu X, et al. Investigation on the   20.  Bandyopadhyay A, Ciliveri S, Guariento S, Zuckschwerdt
               microstructure, mechanical properties, in vitro degradation   N, Hogg WW. Fatigue behavior of additively manufactured
               behavior and biocompatibility of newly developed Zn-0.8%   Ti3Al2V alloy. Mater Sci Addit Manuf. 2023;2(3):
               Li-(Mg, Ag) alloys for guided bone regeneration. Mater Sci   1705.
               Eng C. 2019;99:1021-1034.                          doi: 10.36922/msam.1705


            Volume 10 Issue 4 (2024)                       442                                doi: 10.36922/ijb.3034
   445   446   447   448   449   450   451   452   453   454   455