Page 482 - IJB-10-4
P. 482

International Journal of Bioprinting                                  3D-bioprinted peripheral nerve scaffold




            40.  Kim HS, Lee J, Lee DY, et al. Schwann cell precursors from   treating spinal cord injury. J Neurotrauma. Published online
               human pluripotent stem cells as a potential therapeutic target   January 23, 2024.
               for myelin repair. Stem Cell Reports. 2017;8(6):1714-1726.     doi: 10.1089/neu.2023.0251
               doi: 10.1016/j.stemcr.2017.04.011               49.  Martens W, Sanen K, Georgiou M, et al. Human dental pulp
            41.  Rowley JA, Mooney DJ. Alginate type and RGD density   stem cells can differentiate into Schwann cells and promote
               control  myoblast  phenotype.  J Biomed Mater Res.   and guide neurite outgrowth in an aligned tissue-engineered
               2002;60(2):217-223.                                collagen construct in vitro. FASEB J. 2014;28(4):1634-1643.
               doi: 10.1002/jbm.1287                              doi: 10.1096/fj.13-243980
            42.  Bain JR, Mackinnon SE, Hunter DA. Functional evaluation   50.  Jarmalaviciute A, Tunaitis V, Strainiene E, et al. A new
               of complete sciatic, peroneal, and posterior tibial nerve   experimental model for neuronal and glial differentiation
               lesions in the rat.  Plast Reconstr Surg. 1989;83(1):   using stem cells derived from human exfoliated deciduous
               129-138.                                           teeth. J Mol Neurosci. Published online June 26, 2013.
               doi: 10.1097/00006534-198901000-00024              doi: 10.1007/s12031-013-0046-0
            43.  Shahidi S, Janmaleki M, Riaz S, Sanati NA, Syed N. A   51.  Pepelanova  I,  Kruppa  K,  Scheper  T,  Lavrentieva  A.
               tuned gelatin methacryloyl (GelMA) hydrogel facilitates   Gelatin-methacryloyl (GelMA) hydrogels with defined
               myelination of dorsal root ganglia neurons in vitro. Mater   degree of functionalization as a versatile toolkit for 3D cell
               Sci Eng C Mater Biol Appl. 2021;126:112131.        culture and extrusion bioprinting.  Bioengineering  (Basel).
               doi: 10.1016/j.msec.2021.112131                    2018;5(3).
                                                                  doi: 10.3390/bioengineering5030055
            44.  Liu W, Heinrich MA, Zhou Y, et al. Extrusion bioprinting
               of shear-thinning gelatin methacryloyl bioinks. Adv Healthc   52.  Yang GH, Kim W, Kim J, Kim G. A skeleton muscle model
               Mater. 2017;6(12).                                 using  GelMA-based  cell-aligned  bioink  processed  with
               doi: 10.1002/adhm.201601451                        an electric-field assisted 3D/4D bioprinting.  Theranostics.
                                                                  2021;11(1):48-63.
            45.  Huang Z, Powell R, Phillips JB, Haastert-Talini K. Perspective      doi: 10.7150/thno.50794
               on Schwann cells derived from induced pluripotent stem
               cells in peripheral nerve tissue engineering. Cells. 2020;9(11).  53.  Dong Q, Zhang M, Zhou X, et al. 3D-printed Mg-
               doi: 10.3390/cells9112497                          incorporated PCL-based scaffolds: a promising approach
                                                                  for bone healing.  Mater Sci Eng C Mater Biol  Appl.
            46.  Nakamura S, Yamada Y, Katagiri W, Sugito T, Ito K, Ueda   2021;129:112372.
               M. Stem cell proliferation pathways comparison between      doi: 10.1016/j.msec.2021.112372
               human exfoliated deciduous teeth and dental pulp stem cells
               by gene expression profile from promising dental pulp.  J   54.  Liu C, Wang Z, Wei X, Chen B, Luo Y. 3D printed hydrogel/
               Endod. 2009;35(11):1536-1542.                      PCL core/shell fiber scaffolds with NIR-triggered drug
               doi: 10.1016/j.joen.2009.07.024                    release for cancer therapy and wound healing. Acta Biomater.
                                                                  2021;131:314-325.
            47.  Ko CS, Chen JH, Su WT. Stem cells from human exfoliated      doi: 10.1016/j.actbio.2021.07.011
               deciduous teeth: a concise review. Curr Stem Cell Res Ther.
               2020;15(1):61-76.                               55.  Du M, Liu S, Lan N, et al. Electrospun PCL/gelatin/arbutin
               doi: 10.2174/1574888X14666191018122109             nanofiber membranes as potent reactive oxygen species
                                                                  scavengers to  accelerate  cutaneous  wound  healing.  Regen
            48.  Nishii T, Osuka K, Nishimura Y, et al. Protective mechanism   Biomater. 2024;11:rbad114.
               of stem cells from human exfoliated deciduous teeth in      doi: 10.1093/rb/rbad114























            Volume 10 Issue 4 (2024)                       474                                doi: 10.36922/ijb.2908
   477   478   479   480   481   482   483   484   485   486   487