Page 482 - IJB-10-4
P. 482
International Journal of Bioprinting 3D-bioprinted peripheral nerve scaffold
40. Kim HS, Lee J, Lee DY, et al. Schwann cell precursors from treating spinal cord injury. J Neurotrauma. Published online
human pluripotent stem cells as a potential therapeutic target January 23, 2024.
for myelin repair. Stem Cell Reports. 2017;8(6):1714-1726. doi: 10.1089/neu.2023.0251
doi: 10.1016/j.stemcr.2017.04.011 49. Martens W, Sanen K, Georgiou M, et al. Human dental pulp
41. Rowley JA, Mooney DJ. Alginate type and RGD density stem cells can differentiate into Schwann cells and promote
control myoblast phenotype. J Biomed Mater Res. and guide neurite outgrowth in an aligned tissue-engineered
2002;60(2):217-223. collagen construct in vitro. FASEB J. 2014;28(4):1634-1643.
doi: 10.1002/jbm.1287 doi: 10.1096/fj.13-243980
42. Bain JR, Mackinnon SE, Hunter DA. Functional evaluation 50. Jarmalaviciute A, Tunaitis V, Strainiene E, et al. A new
of complete sciatic, peroneal, and posterior tibial nerve experimental model for neuronal and glial differentiation
lesions in the rat. Plast Reconstr Surg. 1989;83(1): using stem cells derived from human exfoliated deciduous
129-138. teeth. J Mol Neurosci. Published online June 26, 2013.
doi: 10.1097/00006534-198901000-00024 doi: 10.1007/s12031-013-0046-0
43. Shahidi S, Janmaleki M, Riaz S, Sanati NA, Syed N. A 51. Pepelanova I, Kruppa K, Scheper T, Lavrentieva A.
tuned gelatin methacryloyl (GelMA) hydrogel facilitates Gelatin-methacryloyl (GelMA) hydrogels with defined
myelination of dorsal root ganglia neurons in vitro. Mater degree of functionalization as a versatile toolkit for 3D cell
Sci Eng C Mater Biol Appl. 2021;126:112131. culture and extrusion bioprinting. Bioengineering (Basel).
doi: 10.1016/j.msec.2021.112131 2018;5(3).
doi: 10.3390/bioengineering5030055
44. Liu W, Heinrich MA, Zhou Y, et al. Extrusion bioprinting
of shear-thinning gelatin methacryloyl bioinks. Adv Healthc 52. Yang GH, Kim W, Kim J, Kim G. A skeleton muscle model
Mater. 2017;6(12). using GelMA-based cell-aligned bioink processed with
doi: 10.1002/adhm.201601451 an electric-field assisted 3D/4D bioprinting. Theranostics.
2021;11(1):48-63.
45. Huang Z, Powell R, Phillips JB, Haastert-Talini K. Perspective doi: 10.7150/thno.50794
on Schwann cells derived from induced pluripotent stem
cells in peripheral nerve tissue engineering. Cells. 2020;9(11). 53. Dong Q, Zhang M, Zhou X, et al. 3D-printed Mg-
doi: 10.3390/cells9112497 incorporated PCL-based scaffolds: a promising approach
for bone healing. Mater Sci Eng C Mater Biol Appl.
46. Nakamura S, Yamada Y, Katagiri W, Sugito T, Ito K, Ueda 2021;129:112372.
M. Stem cell proliferation pathways comparison between doi: 10.1016/j.msec.2021.112372
human exfoliated deciduous teeth and dental pulp stem cells
by gene expression profile from promising dental pulp. J 54. Liu C, Wang Z, Wei X, Chen B, Luo Y. 3D printed hydrogel/
Endod. 2009;35(11):1536-1542. PCL core/shell fiber scaffolds with NIR-triggered drug
doi: 10.1016/j.joen.2009.07.024 release for cancer therapy and wound healing. Acta Biomater.
2021;131:314-325.
47. Ko CS, Chen JH, Su WT. Stem cells from human exfoliated doi: 10.1016/j.actbio.2021.07.011
deciduous teeth: a concise review. Curr Stem Cell Res Ther.
2020;15(1):61-76. 55. Du M, Liu S, Lan N, et al. Electrospun PCL/gelatin/arbutin
doi: 10.2174/1574888X14666191018122109 nanofiber membranes as potent reactive oxygen species
scavengers to accelerate cutaneous wound healing. Regen
48. Nishii T, Osuka K, Nishimura Y, et al. Protective mechanism Biomater. 2024;11:rbad114.
of stem cells from human exfoliated deciduous teeth in doi: 10.1093/rb/rbad114
Volume 10 Issue 4 (2024) 474 doi: 10.36922/ijb.2908

