Page 498 - IJB-10-4
P. 498
International Journal of Bioprinting Embedded bioprinting of cartilage
8. Wu Y, Kennedy P, Bonazza N, et al. Three-dimensional creation for biomedical applications. Appl Phys Rev.
bioprinting of articular cartilage: a systematic review. 2022;9(1):011408.
Cartilage. 2021;12(1):76-92. doi: 10.1063/5.0068329
doi: 10.1177/1947603518809410
20. Kajtez J, Wesseler MF, Birtele M, et al. Embedded 3D
9. Markstedt K, Mantas A, Tournier I, et al. 3D bioprinting printing in self‐healing annealable composites for precise
human chondrocytes with nanocellulose-alginate bioink for patterning of functionally mature human neural constructs.
cartilage tissue engineering applications. Biomacromolecules. Adv Sci (Weinh). 2022;9(25):e2201392.
2015;16(5):1489-1496. doi: 10.1002/advs.202201392
doi: 10.1021/acs.biomac.5b00188
21. Zhang S, Qi C, Zhang W, et al. In situ endothelialization of
10. Cui X, Breitenkamp K, Finn M, et al. Direct human cartilage free-form 3d network of interconnected tubular channels via
repair using three-dimensional bioprinting technology. interfacial coacervation by aqueous-in-aqueous embedded
Tissue Eng Part A. 2012;18(11-12):1304-1312. bioprinting. Adv Mater. 2023;35(7): e2209263.
doi: 10.1089/ten.TEA.2011.0543 doi: 10.1002/adma.202209263
11. Zhu W, Cui H, Boualam B, et al. 3D bioprinting mesenchymal 22. Chen Z, Huang C, Liu H, et al. 3D bioprinting of complex
stem cell-laden construct with core-shell nanospheres biological structures with tunable elastic modulus and
for cartilage tissue engineering. Nanotechnology. porosity using freeform reversible embedding of suspended
2018;29(18):185101. hydrogels. Bio-des Manuf. 2023;6(5):550-562.
doi: 10.1088/1361-6528/aaafa1 doi: 10.1007/s42242-023-00251-5
12. Ayan B, Wu Y, Karuppagounder V, et al. Aspiration- 23. Hinton TJ, Jallerat Q, Palchesko RN, et al., 2015, Three-
assisted bioprinting of the osteochondral interface. Sci Rep. dimensional printing of complex biological structures by
2020;10(1): 13148. freeform reversible embedding of suspended hydrogels. Sci
doi: 10.1038/s41598-020-69960-6 Adv. 2015;1(9):e1500758.
doi: 10.1126/sciadv.1500758
13. Ren X, Wang F, Chen C, et al. Engineering zonal cartilage
through bioprinting collagen type II hydrogel constructs 24. Bhattacharjee T, Zehnder SM, Rowe KG, et al. Writing in the
with biomimetic chondrocyte density gradient. BMC granular gel medium. Sci Adv. 2015;1(8):e1500655.
Musculoskelet Disord. 2016;17:1-10. doi: 10.1126/sciadv.1500655
doi: 10.1186/s12891-016-1130-8
25. Hinton TJ, Hudson A, Pusch K, et al. 3D printing
14. Tamaddon M, Blunn G, Tan R, et al. In vivo evaluation PDMS elastomer in a hydrophilic support bath via
of additively manufactured multi-layered scaffold for freeform reversible embedding. ACS Biomater Sci Eng.
the repair of large osteochondral defects. Bio-des Manuf. 2016;2(10):1781-1786.
2022;5(3):481-496. doi: 10.1021/acsbiomaterials.6b00170
doi: 10.1007/s42242-021-00177-w
26. Yang J, He H, Li D, et al. Advanced strategies in the application
15. Levato R, Visser J, Planell JA, et al. Biofabrication of tissue of gelatin-based bioink for extrusion bioprinting. Bio-des
constructs by 3D bioprinting of cell-laden microcarriers. Manuf. 2023;6(5):586-608.
Biofabrication. 2014;6(3):035020. doi: 10.1007/s42242-023-00236-4
doi: 10.1088/1758-5082/6/3/035020
27. Heo DN, Alioglu MA, Wu Y, et al. 3D bioprinting of
16. Shim JH, Jang KM, Hahn SK, et al. Three-dimensional carbohydrazide-modified gelatin into microparticle-
bioprinting of multilayered constructs containing human suspended oxidized alginate for the fabrication of complex-
mesenchymal stromal cells for osteochondral tissue regeneration shaped tissue constructs. ACS Appl Mater Interfaces.
in the rabbit knee joint. Biofabrication. 2016;8(1):014102. 2020;12(18):20295-20306.
doi: 10.1088/1758-5090/8/1/014102 doi: 10.1021/acsami.0c05096
17. Lee A, Hudson A, Shiwarski D, et al. 3D bioprinting of 28. Hozumi T, Kageyama T, Ohta S, et al. Injectable hydrogel with
collagen to rebuild components of the human heart. Science. slow degradability composed of gelatin and hyaluronic acid
2019;365(6452):482-487. cross-linked by Schiff’s base formation. Biomacromolecules.
doi: 10.1126/science.aav9051 2018;19(2):288-297.
doi: 10.1021/acs.biomac.7b01133
18. Fang Y, Guo Y, Wu B, et al. Expanding embedded
3D bioprinting capability for engineering complex 29. Friedrich LM, Seppala JE. Simulated filament shapes
organs with freeform vascular networks. Adv Mater. in embedded 3D printing. Soft Matter. 2021;17(35):
2023;35(22):e2205082. 8027-8046.
doi: 10.1002/adma.202205082 doi: 10.1039/D1SM00731A
19. Ren B, Song K, Sanikommu AR, et al. Study of sacrificial 30. Xu Y, Qi J, Zhou W, et al. Generation of ring-shaped
ink-assisted embedded printing for 3D perfusable channel human iPSC-derived functional heart microtissues
Volume 10 Issue 4 (2024) 490 doi: 10.36922/ijb.3520

