Page 498 - IJB-10-4
P. 498

International Journal of Bioprinting                                     Embedded bioprinting of cartilage




            8.   Wu Y, Kennedy P, Bonazza N, et al. Three-dimensional   creation for biomedical applications.  Appl  Phys  Rev.
               bioprinting of articular cartilage: a systematic review.   2022;9(1):011408.
               Cartilage. 2021;12(1):76-92.                       doi: 10.1063/5.0068329
               doi: 10.1177/1947603518809410
                                                               20.  Kajtez J, Wesseler MF, Birtele M, et al. Embedded 3D
            9.   Markstedt  K, Mantas  A, Tournier  I,  et al.  3D bioprinting   printing in self‐healing annealable composites for precise
               human chondrocytes with nanocellulose-alginate bioink for   patterning of functionally mature human neural constructs.
               cartilage tissue engineering applications. Biomacromolecules.   Adv Sci (Weinh). 2022;9(25):e2201392.
               2015;16(5):1489-1496.                              doi: 10.1002/advs.202201392
               doi: 10.1021/acs.biomac.5b00188
                                                               21.  Zhang S, Qi C, Zhang W, et al. In situ endothelialization of
            10.  Cui X, Breitenkamp K, Finn M, et al. Direct human cartilage   free-form 3d network of interconnected tubular channels via
               repair using three-dimensional bioprinting technology.   interfacial coacervation by aqueous-in-aqueous embedded
               Tissue Eng Part A. 2012;18(11-12):1304-1312.       bioprinting. Adv Mater. 2023;35(7): e2209263.
               doi: 10.1089/ten.TEA.2011.0543                     doi: 10.1002/adma.202209263
            11.  Zhu W, Cui H, Boualam B, et al. 3D bioprinting mesenchymal   22.  Chen Z, Huang C, Liu H, et al. 3D bioprinting of complex
               stem cell-laden construct with core-shell nanospheres   biological  structures  with  tunable  elastic  modulus and
               for  cartilage  tissue  engineering.  Nanotechnology.   porosity using freeform reversible embedding of suspended
               2018;29(18):185101.                                hydrogels. Bio-des Manuf. 2023;6(5):550-562.
               doi: 10.1088/1361-6528/aaafa1                      doi: 10.1007/s42242-023-00251-5
            12.  Ayan B, Wu Y, Karuppagounder V, et al. Aspiration-  23.  Hinton TJ, Jallerat Q, Palchesko RN, et al., 2015, Three-
               assisted bioprinting of the osteochondral interface. Sci Rep.   dimensional printing of complex biological structures by
               2020;10(1): 13148.                                 freeform reversible embedding of suspended hydrogels. Sci
               doi: 10.1038/s41598-020-69960-6                    Adv. 2015;1(9):e1500758.
                                                                  doi: 10.1126/sciadv.1500758
            13.  Ren X, Wang F, Chen C, et al. Engineering zonal cartilage
               through bioprinting collagen type II hydrogel constructs   24.  Bhattacharjee T, Zehnder SM, Rowe KG, et al. Writing in the
               with biomimetic chondrocyte density gradient.  BMC   granular gel medium. Sci Adv. 2015;1(8):e1500655.
               Musculoskelet Disord. 2016;17:1-10.                doi: 10.1126/sciadv.1500655
               doi: 10.1186/s12891-016-1130-8
                                                               25.  Hinton TJ, Hudson A, Pusch K, et al. 3D printing
            14.  Tamaddon M, Blunn G, Tan R, et al. In vivo evaluation   PDMS elastomer in a hydrophilic support bath via
               of additively manufactured multi-layered scaffold for   freeform reversible  embedding.  ACS Biomater Sci Eng.
               the repair of large osteochondral defects.  Bio-des Manuf.   2016;2(10):1781-1786.
               2022;5(3):481-496.                                 doi: 10.1021/acsbiomaterials.6b00170
               doi: 10.1007/s42242-021-00177-w
                                                               26.  Yang J, He H, Li D, et al. Advanced strategies in the application
            15.  Levato R, Visser J, Planell JA, et al. Biofabrication of tissue   of gelatin-based bioink for extrusion bioprinting.  Bio-des
               constructs by 3D bioprinting of cell-laden microcarriers.   Manuf. 2023;6(5):586-608.
               Biofabrication. 2014;6(3):035020.                  doi: 10.1007/s42242-023-00236-4
               doi: 10.1088/1758-5082/6/3/035020
                                                               27.  Heo DN, Alioglu MA, Wu Y, et al. 3D bioprinting of
            16.  Shim JH, Jang KM, Hahn SK, et al. Three-dimensional   carbohydrazide-modified gelatin into microparticle-
               bioprinting of multilayered constructs containing human   suspended oxidized alginate for the fabrication of complex-
               mesenchymal stromal cells for osteochondral tissue regeneration   shaped tissue constructs.  ACS Appl Mater Interfaces.
               in the rabbit knee joint. Biofabrication. 2016;8(1):014102.  2020;12(18):20295-20306.
               doi: 10.1088/1758-5090/8/1/014102                  doi: 10.1021/acsami.0c05096
            17.  Lee A, Hudson A, Shiwarski D, et al. 3D bioprinting of   28.  Hozumi T, Kageyama T, Ohta S, et al. Injectable hydrogel with
               collagen to rebuild components of the human heart. Science.   slow degradability composed of gelatin and hyaluronic acid
               2019;365(6452):482-487.                            cross-linked by Schiff’s base formation. Biomacromolecules.
               doi: 10.1126/science.aav9051                       2018;19(2):288-297.
                                                                  doi: 10.1021/acs.biomac.7b01133
            18.  Fang Y, Guo Y, Wu B, et al. Expanding embedded
               3D bioprinting capability for engineering complex   29.  Friedrich LM, Seppala JE. Simulated filament shapes
               organs with freeform vascular networks.  Adv  Mater.   in embedded 3D printing.  Soft Matter. 2021;17(35):
               2023;35(22):e2205082.                              8027-8046.
               doi: 10.1002/adma.202205082                        doi: 10.1039/D1SM00731A
            19.  Ren B, Song K, Sanikommu AR, et al. Study of sacrificial   30.  Xu Y, Qi J, Zhou W, et al. Generation of ring-shaped
               ink-assisted embedded printing for 3D perfusable channel   human iPSC-derived functional heart microtissues


            Volume 10 Issue 4 (2024)                       490                                doi: 10.36922/ijb.3520
   493   494   495   496   497   498   499   500   501   502   503