Page 499 - IJB-10-4
P. 499

International Journal of Bioprinting                                     Embedded bioprinting of cartilage




               in a Möbius strip configuration.  Bio-des  Manuf. 2022;   37.  Chen S, Tan WS, Bin Juhari MA, et al. Freeform 3D printing
               5(4):687-699.                                      of soft matters: recent advances in technology for biomedical
               doi: 10.1007/s42242-022-00204-4                    engineering. Biomed Eng Lett. 2020;10:453-479.
                                                                  doi: 10.1007/s13534-020-00171-8
            31.  Sophia  Fox  AJ,  Bedi  A,  Rodeo  SA.  The  basic  science  of
               articular cartilage: structure, composition, and function.   38.  Becker M, Gurian M, Schot M, et al. Aqueous two-phase
               Sports Health. 2009;1(6):461-468.                  enabled low viscosity 3d (LoV3D) bioprinting of living
               doi: 10.1177/1941738109350438                      matter. Adv Sci (Weinh). 2023;10(8):2204609.
                                                                  doi: 10.1002/advs.202370046
            32.  Mow VC, Ratcliffe A, Poole AR. Cartilage and diarthrodial
               joints as paradigms for hierarchical materials and structures.   39.  O’Bryan C S, Bhattacharjee T, Niemi SR, et al. Three-
               Biomaterials. 1992;13(2):67-97.                    dimensional printing with sacrificial materials for soft
               doi: 10.1016/0142-9612(92)90001-5                  matter manufacturing. MRS Bull. 2017;42(8):571-577.
                                                                  doi: 10.1557/mrs.2017.167
            33.  Kiani C, Chen L, Wu YJ, et al. Structure and function of
               aggrecan. Cell Res. 2002;12(1):19-32.           40.  Bakht SM, Gomez‐Florit M, Lamers T, et al. 3D bioprinting
               doi: 10.1038/sj.cr.7290106                         of miniaturized tissues embedded in self-assembled
                                                                  nanoparticle-based fibrillar platforms.  Adv Funct Mater.
            34.  Hua W, Mitchell K, Raymond L, et al. Fluid bath-assisted
               3D printing for biomedical applications: from pre-to   2021;31(46):2104245.
               postprinting stages.  ACS Biomater Sci Eng.  2021;7(10):      doi: 10.1002/adfm.202104245
               4736-4756.                                      41.  Huo X, Zhang B, Han Q, et al. Numerical simulation and
               doi: 10.1021/acsbiomaterials.1c00910               printability analysis of fused deposition modeling with dual-
                                                                  temperature control. Bio-des Manuf. 2023;6(2):174-188.
            35.  Tang G, Luo Z, Lian L, et al. Liquid-embedded (bio) printing
               of  alginate-free,  standalone,  ultrafine,  and  ultrathin-     doi: 10.1007/s42242-023-00239-1
               walled  cannular  structures.  Proc Natl Acad Sci U S A.   42.  LeBlanc KJ, Niemi SR, Bennett AI, et al. Stability of high
               2023;120(7):e2206762120.                           speed 3D printing in liquid-like solids.  ACS Biomater Sci
               doi: 10.1073/pnas.2206762120                       Eng. 2016;2(10):1796-1799.
                                                                  doi: 10.1021/acsbiomaterials.6b00184
            36.  Wen C, Lu L, and Li X. Mechanically robust gelatin-A
               lginate  IPN  hydrogels  by  a  combination  of  enzymatic   43.  Li Q, Ma L, Gao Z,  et al. Regulable supporting baths for
               and ionic crosslinking approaches.  Macromol  Mater Eng.   embedded printing of soft biomaterials with variable stiffness.
               2014;299(4):504-513.                               ACS Appl Mater Interfaces. 2022;14(37):41695-41711.
               doi: 10.1002/mame.201300274                        doi: 10.1021/acsami.2c09221





































            Volume 10 Issue 4 (2024)                       491                                doi: 10.36922/ijb.3520
   494   495   496   497   498   499   500   501   502   503   504