Page 521 - IJB-10-4
P. 521
International Journal of Bioprinting 3D-printed variable stiffness scaffolds
2. Scotti C, Hirschmann MT, Antinolfi P, Martin I, Peretti GM. 13. Ahn J-H, Kim J, Han G, et al. 3D-printed biodegradable
Meniscus repair and regeneration: review on current methods composite scaffolds with significantly enhanced mechanical
and research potential. Eur Cell Mater. 2013;26:150-170. properties via the combination of binder jetting and capillary
doi: 10.22203/ecm.v026a11 rise infiltration process. Addit Manuf. 2021;41:101988.
doi: 10.1016/j.addma.2021.101988
3. Murphy CA, Costa JB, Silva-Correia J, Oliveira JM, Reis RL,
Collins MN. Biopolymers and polymers in the search of 14. Liu D, Nie W, Li D, et al. 3D printed PCL/SrHA scaffold
alternative treatments for meniscal regeneration: state of the for enhanced bone regeneration. Chem Eng J. 2019;362:
art and future trends. Appl Mater Today. 2018;12:51-71. 269-279.
doi: 10.1016/j.apmt.2018.04.002 doi: 10.1016/j.cej.2019.01.015
4. Szojka A, Lalh K, Andrews SHJ, Jomha NM, Osswald M, 15. Collins MN, Zamboni F, Serafin A, Ren G, Thanusha
Adesida AB. Biomimetic 3D printed scaffolds for meniscus AV, Culebras M. The role of hyaluronic acid in tissue
tissue engineering. Bioprinting. 2017;8:1-7. engineering. In: Oliveira JM, Radhouani H, Reis RL, eds.
doi: 10.1016/j.bprint.2017.08.001 Polysaccharides of Microbial Origin: Biomedical Applications.
Cham: Springer International Publishing; 2022: 1063-1116.
5. Leslie BW, Gardner DL, McGeough JA, Moran RS,
Anisotropic response of the human knee joint meniscus to doi: 10.1007/978-3-030-42215-8_56
unconfined compression. J Eng Med. 2000;214(6):631-635. 16. Serafin A, Culebras M, Collins MN. Synthesis and evaluation
doi: 10.1243/0954411001535651 of alginate, gelatin, and hyaluronic acid hybrid hydrogels
for tissue engineering applications. Int J Biol Macromol.
6. Zhang ZZ, Wang SJ, Zhang JY, et al. 3D-printed poly(ε-
caprolactone) scaffold augmented with mesenchymal 2023;233:123438.
stem cells for total meniscal substitution: a 12- and 24- doi: 10.1016/j.ijbiomac.2023.123438
week animal study in a rabbit model. Am J Sports Med. 17. Sarem M, Moztarzadeh F, Mozafari M. Optimization
2017;45(7):1497-1511. strategies on the structural modeling of gelatin/chitosan
doi: 10.1177/0363546517691513 scaffolds to mimic human meniscus tissue. Mater Sci Eng C
Mater Biol Appl. 2013;33(8):4777-4785.
7. Cengiz IF, Pitikakis M, Cesario L, et al. Building the basis
for patient-specific meniscal scaffolds: from human knee doi: 10.1016/j.msec.2013.07.036
MRI to fabrication of 3D printed scaffolds. Bioprinting. 18. Groll J, Burdick JA, Cho DW, et al. A definition of bioinks
2016;1(June):1-10. and their distinction from biomaterial inks. Biofabrication.
doi: 10.1016/j.bprint.2016.05.001 2018;11(1):013001.
doi: 10.1088/1758-5090/aaec52
8. Fisher MB, Henning EA, Söegaard N, Esterhai JL, Mauck
RL. Organized nanofibrous scaffolds that mimic the 19. Rey-rico A, Klich A, Cucchiarini M, Madry H. Biomedical-
macroscopic and microscopic architecture of the knee grade, high mannuronic acid content (BioMVM) alginate
meniscus. Acta Biomater. 2013;9(1):4496-4504. enhances the proteoglycan production of primary human
doi: 10.1016/j.actbio.2012.10.018 meniscal fibrochondrocytes in a 3-D microenvironment. Sci
Rep. 2016;6:28170.
9. Tienen TG, Heijkants RG, de Groot JH, et al. Replacement
of the knee meniscus by a porous polymer implant: a study doi: 10.1038/srep28170
in dogs. Am J Sports Med. 2006;34(1):64-71. 20. Puetzer JL, Bonassar LJ. High density type i collagen gels
doi: 10.1177/0363546505280905 for tissue engineering of whole menisci. Acta Biomater.
2013;9(8):7787-7795.
10. Vrancken ACT, Eggermont F, Hannink G, Van Tienen
TG. Functional biomechanical performance of a novel doi: 10.1016/j.actbio.2013.05.002
anatomically shaped polycarbonate urethane total meniscus 21. Sarem M, Moztarzadeh F, Mozafari M. How can genipin
replacement. Knee Surg Sports Traumatol Arthrosc. assist gelatin/carbohydrate chitosan scaffolds to act as
2016;24(5):1485-1494. replacements of load-bearing soft tissues? Carbohydr Polym.
doi: 10.1007/s00167-015-3632-6 2013;93(2):635-643.
doi: 10.1016/j.carbpol.2012.11.099
11. Cook JL, Fox DB. A novel bioabsorbable conduit augments
healing of avascular meniscal tears in a dog model. Am J 22. Grogan SP, Chung PH, Soman P, et al. Digital micromirror
Sports Med. 2007;35(11):1877-1887. device projection printing system for meniscus tissue
doi: 10.1177/0363546507304330 engineering. Acta Biomater. 2013;9(7):7218-7226.
doi: 10.1016/j.actbio.2013.03.020
12. Baker BM, Nathan AS, Gee AO, Mauck RL. The influence
of an aligned nanofibrous topography on human 23. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S,
mesenchymal stem cell fibrochondrogenesis. Biomaterials. Khademhosseini A. Cell-laden microengineered gelatin
2010;31(24):6190-6200. methacrylate hydrogels. Biomaterials. 2010;31(21):5536-5544.
doi: 10.1016/j.biomaterials.2010.04.036 doi: 10.1016/j.biomaterials.2010.03.064
Volume 10 Issue 4 (2024) 513 doi: 10.36922/ijb.3784

