Page 521 - IJB-10-4
P. 521

International Journal of Bioprinting                                   3D-printed variable stiffness scaffolds




            2.   Scotti C, Hirschmann MT, Antinolfi P, Martin I, Peretti GM.   13.  Ahn J-H, Kim J, Han G, et al. 3D-printed biodegradable
               Meniscus repair and regeneration: review on current methods   composite scaffolds with significantly enhanced mechanical
               and research potential. Eur Cell Mater. 2013;26:150-170.  properties via the combination of binder jetting and capillary
               doi: 10.22203/ecm.v026a11                          rise infiltration process. Addit Manuf. 2021;41:101988.
                                                                  doi: 10.1016/j.addma.2021.101988
            3.   Murphy CA, Costa JB, Silva-Correia J, Oliveira JM, Reis RL,
               Collins MN. Biopolymers and polymers in the search of   14.  Liu D, Nie W, Li D, et al. 3D printed PCL/SrHA scaffold
               alternative treatments for meniscal regeneration: state of the   for enhanced bone regeneration.  Chem Eng J. 2019;362:
               art and future trends. Appl Mater Today. 2018;12:51-71.  269-279.
               doi: 10.1016/j.apmt.2018.04.002                    doi: 10.1016/j.cej.2019.01.015
            4.   Szojka A, Lalh K, Andrews SHJ, Jomha NM, Osswald M,   15.  Collins MN, Zamboni F, Serafin A, Ren G, Thanusha
               Adesida AB. Biomimetic 3D printed scaffolds for meniscus   AV,  Culebras  M.  The  role  of  hyaluronic  acid  in  tissue
               tissue engineering. Bioprinting. 2017;8:1-7.       engineering. In: Oliveira JM, Radhouani H, Reis RL, eds.
               doi: 10.1016/j.bprint.2017.08.001                  Polysaccharides of Microbial Origin: Biomedical Applications.
                                                                  Cham: Springer International Publishing; 2022: 1063-1116.
            5.   Leslie  BW, Gardner  DL, McGeough JA,  Moran RS,
               Anisotropic response of the human knee joint meniscus to      doi: 10.1007/978-3-030-42215-8_56
               unconfined compression. J Eng Med. 2000;214(6):631-635.  16.  Serafin A, Culebras M, Collins MN. Synthesis and evaluation
               doi: 10.1243/0954411001535651                      of alginate, gelatin, and hyaluronic  acid hybrid  hydrogels
                                                                  for tissue engineering applications.  Int J Biol Macromol.
            6.   Zhang ZZ,  Wang SJ,  Zhang JY,  et al. 3D-printed  poly(ε-
               caprolactone) scaffold augmented with mesenchymal   2023;233:123438.
               stem cells for total meniscal substitution: a 12- and 24-     doi: 10.1016/j.ijbiomac.2023.123438
               week animal study in a rabbit model.  Am  J Sports Med.   17.  Sarem M, Moztarzadeh F, Mozafari M. Optimization
               2017;45(7):1497-1511.                              strategies on the structural modeling of gelatin/chitosan
               doi: 10.1177/0363546517691513                      scaffolds to mimic human meniscus tissue. Mater Sci Eng C
                                                                  Mater Biol Appl. 2013;33(8):4777-4785.
            7.   Cengiz IF, Pitikakis M, Cesario L, et al. Building the basis
               for patient-specific meniscal scaffolds: from human knee      doi: 10.1016/j.msec.2013.07.036
               MRI to fabrication of 3D printed scaffolds.  Bioprinting.   18.  Groll J, Burdick JA, Cho DW, et al. A definition of bioinks
               2016;1(June):1-10.                                 and their distinction from biomaterial inks. Biofabrication.
               doi: 10.1016/j.bprint.2016.05.001                  2018;11(1):013001.
                                                                  doi: 10.1088/1758-5090/aaec52
            8.   Fisher MB, Henning EA, Söegaard N, Esterhai JL, Mauck
               RL. Organized nanofibrous scaffolds that mimic the   19.  Rey-rico A, Klich A, Cucchiarini M, Madry H. Biomedical-
               macroscopic and  microscopic  architecture  of  the  knee   grade, high mannuronic acid content (BioMVM) alginate
               meniscus. Acta Biomater. 2013;9(1):4496-4504.      enhances the proteoglycan production of primary human
               doi: 10.1016/j.actbio.2012.10.018                  meniscal fibrochondrocytes in a 3-D microenvironment. Sci
                                                                  Rep. 2016;6:28170.
            9.   Tienen TG, Heijkants RG, de Groot JH, et al. Replacement
               of the knee meniscus by a porous polymer implant: a study      doi: 10.1038/srep28170
               in dogs. Am J Sports Med. 2006;34(1):64-71.     20.  Puetzer JL, Bonassar LJ. High density type i collagen gels
               doi: 10.1177/0363546505280905                      for tissue engineering of whole menisci.  Acta Biomater.
                                                                  2013;9(8):7787-7795.
            10.  Vrancken ACT, Eggermont F, Hannink G, Van Tienen
               TG. Functional biomechanical performance of a novel      doi: 10.1016/j.actbio.2013.05.002
               anatomically shaped polycarbonate urethane total meniscus   21.  Sarem M, Moztarzadeh F, Mozafari M. How can genipin
               replacement.  Knee Surg Sports Traumatol Arthrosc.   assist gelatin/carbohydrate chitosan scaffolds to act as
               2016;24(5):1485-1494.                              replacements of load-bearing soft tissues? Carbohydr Polym.
               doi: 10.1007/s00167-015-3632-6                     2013;93(2):635-643.
                                                                  doi: 10.1016/j.carbpol.2012.11.099
            11.  Cook JL, Fox DB. A novel bioabsorbable conduit augments
               healing of avascular meniscal tears in a dog model. Am J   22.  Grogan SP, Chung PH, Soman P, et al. Digital micromirror
               Sports Med. 2007;35(11):1877-1887.                 device projection printing system for meniscus tissue
               doi: 10.1177/0363546507304330                      engineering. Acta Biomater. 2013;9(7):7218-7226.
                                                                  doi: 10.1016/j.actbio.2013.03.020
            12.  Baker BM, Nathan AS, Gee AO, Mauck RL. The influence
               of  an  aligned  nanofibrous  topography  on  human   23.  Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S,
               mesenchymal  stem cell fibrochondrogenesis.  Biomaterials.   Khademhosseini A. Cell-laden microengineered gelatin
               2010;31(24):6190-6200.                             methacrylate hydrogels. Biomaterials. 2010;31(21):5536-5544.
               doi: 10.1016/j.biomaterials.2010.04.036            doi: 10.1016/j.biomaterials.2010.03.064



            Volume 10 Issue 4 (2024)                       513                                doi: 10.36922/ijb.3784
   516   517   518   519   520   521   522   523   524   525   526