Page 522 - IJB-10-4
P. 522
International Journal of Bioprinting 3D-printed variable stiffness scaffolds
24. Benton JA, DeForest CA, Vivekanandan V, Anseth 34. Visser J, Melchels FPW, Jeon JE, et al. Reinforcement of
KS. Photocrosslinking of gelatin macromers to hydrogels using three-dimensionally printed microfibres.
synthesize porous hydrogels that promote valvular Nat Commun. 2015;6:6933-6933.
interstitial cell function. Tissue Eng Part A. 2009;15(11): doi: 10.1038/ncomms7933
3221-3230. 35. Murphy CM, Haugh MG, O’Brien FJ. The effect of mean
doi: 10.1089/ten.TEA.2008.0545 pore size on cell attachment, proliferation and migration
25. Bahcecioglu G, Hasirci N, Bilgen B, Hasirci V. Hydrogels in collagen-glycosaminoglycan scaffolds for bone tissue
of agarose, and methacrylated gelatin and hyaluronic acid engineering. Biomaterials. 2010;31(3):461-466.
are more supportive for in vitro meniscus regeneration than doi: 10.1016/j.biomaterials.2009.09.063
three dimensional printed polycaprolactone scaffolds. Int J 36. Pan Z, Duan P, Liu X, et al. Effect of porosities of bilayered
Biol Macromol. 2019;122:1152-1162. porous scaffolds on spontaneous osteochondral repair in
doi: 10.1016/j.ijbiomac.2018.09.06 cartilage tissue engineering. Regen Biomater. 2015;2(1):9-20.
26. Habuchi H, Yamagata T, Iwata H, Suzuki S. The occurrence doi: 10.1093/rb/rbv001
of a wide variety of dermatan sulfate chondroitin 37. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial
sulfate copolymers in fibrous cartilage. J Biol Chem. scaffolds and osteogenesis. Biomaterials. 2005;26(27):
1973;248(17):6019-6028. 5474-5491.
doi: 10.1016/S0021-9258(19)43502-3 doi: 10.1016/j.biomaterials.2005.02.002
27. Levett PA, Melchels FPW, Schrobback K, Hutmacher DW, 38. Murphy CA, Garg AK, Silva-Correia J, Reis RL, Oliveira
Malda J, Klein TJ. A biomimetic extracellular matrix for JM, Collins MN. The meniscus in normal and osteoarthritic
cartilage tissue engineering centered on photocurable tissues: facing the structure property challenges and current
gelatin, hyaluronic acid and chondroitin sulfate. Acta treatment trends. Ann Rev Biomed Eng. 2019;21:495-521.
Biomater. 2014;10(1):214-223. doi: 10.1146/annurev-bioeng-060418-052547
doi: 10.1016/j.actbio.2013.10.005
39. Zein I, Hutmacher DW, Tan KC, Teoh SH. Fused
28. Murphy CA, Cunniffe GM, Garg AK, Collins MN. Regional deposition modeling of novel scaffold architectures for
dependency of bovine meniscus biomechanics on the tissue engineering applications. Biomaterials. 2002;23(4):
internal structure and glycosaminoglycan content. J Mech 1169-1185.
Behav Biomed Mater. 2019;94:186-192. doi: 10.1016/s0142-9612(01)00232-0
doi: 10.1016/j.jmbbm.2019.02.020
40. Shor L, Güçeri S, Chang R, et al. Precision extruding
29. Murphy CM, Haugh MG, O’Brien FJ. The effect of mean deposition (PED) fabrication of polycaprolactone (PCL)
pore size on cell attachment, proliferation and migration scaffolds for bone tissue engineering. Biofabrication.
in collagen-glycosaminoglycan scaffolds for bone tissue 2009;1(1):015003.
engineering. Biomaterials. 2010;31(3):461-466. doi: 10.1088/1758-5082/1/1/015003
doi: 10.1016/j.biomaterials.2009.09.063
41. Kim JY, Yoon JJ, Park EK, Kim DS, Kim SY, Cho DW.
30. Beck EC, Barragan M, Libeer TB, et al. Chondroinduction Cell adhesion and proliferation evaluation of SFF-based
from naturally derived cartilage matrix: a comparison biodegradable scaffolds fabricated using a multi-head
between devitalized and decellularized cartilage encapsulated deposition system. Biofabrication. 2009;1(1):015002.
in hydrogel pastes. Tissue Eng Part A. 2016;22(7-8): doi: 10.1088/1758-5082/1/1/015002
665-679.
doi: 10.1089/ten.TEA.2015.0546 42. Cahill S, Lohfeld S, McHugh PE. Finite element predictions
compared to experimental results for the effective modulus
31. Costa B, Oliveira JM, Lu R. Biomaterials in meniscus tissue of bone tissue engineering scaffolds fabricated by selective
engineering. In: Oliveira JM, Reis RL, eds. Regenerative laser sintering. J Mater Sci Mater Med. 2009;20(6):
Strategies for the Treatment of Knee Joint Disabilities. Cham: 1255-1262.
Springer International Publishing; 2017: 249-270. doi: 10.1007/s10856-009-3693-5
doi: 10.1007/978-3-319-44785-8_13
43. McDermott ID, Sharifi F, Bull AMJ, Gupte CM, Thomas RW,
32. Kweon H, Yoo MK, Park IK, et al. A novel degradable Amis AA. An anatomical study of meniscal allograft sizing.
polycaprolactone networks for tissue engineering. Knee Surg Sports Traumatol Arthrosc. 2004;12(2):130-135.
Biomaterials. 2003;24(5):801-808. doi: 10.1007/s00167-003-0366-7
doi: 10.1016/s0142-9612(02)00370-8
44. O’Brien FJ, Harley BA, Waller MA, Yannas VI, Gibson LJ,
33. Baker BM, Mauck RL. The effect of nanofiber alignment Prendergast PJ. The effect of pore size on permeability and
on the maturation of engineered meniscus constructs. cell attachment in collagen scaffolds for tissue engineering.
Biomaterials. 2007;28(11):1967-1977. Technol Health Care. 2007;15(1):3-17.
doi: 10.1016/j.biomaterials.2007.01.004 doi: 10.3233/THC-2007-15102
Volume 10 Issue 4 (2024) 514 doi: 10.36922/ijb.3784

