Page 66 - IJB-10-4
P. 66
International Journal of Bioprinting 3D bioprinting in otorhinolaryngology
148. Sandstrom CG. The non-disruptive emergence of an 159. Luo D, Li T, Wang H, Chen Y. Three-dimensional printing
ecosystem for 3D printing - insights from the hearing of personalized nasal stents for patients with cleft lip. Cleft
aid industry’s transition 1989-2008. Technol Forecast Soc Palate Craniofac J. 2019;56(4):521-524.
Change. 2016;102:160-168. doi: 10.1177/1055665618782804
doi: 10.1016/j.techfore.2015.09.006
160. Jung JW, Ha DH, Kim BY, et al. Nasal reconstruction using a
149. Fu F, Luximon Y. Fit and comfort perception on hearing customized three-dimensional-printed stent for congenital
aids: a pilot study. In: Ahram T, Karwowski W, Pickl S, arhinia: three-year follow-up: nasal reconstruction using a
Taiar R, eds. Human Systems Engineering and Design II. 3D-printed stent. Laryngoscope. 2019;129(3):582-585.
Cham: Springer International Publishing; 2020:360-364. doi: 10.1002/lary.27335
doi: 10.1007/978-3-030-27928-8_55
161. Lee AWM, Ma BBY, Ng WT, Chan ATC. Management of
150. Vivero-Lopez M, Xu X, Muras A, et al. Anti-biofilm multi nasopharyngeal carcinoma: current practice and future
drug-loaded 3D printed hearing aids. Mater Sci Eng C Mater perspective. J Clin Oncol. 2015;33(29):3356-3364.
Biol Appl. 2021;119:111606. doi: 10.1200/JCO.2015.60.9347
doi: 10.1016/j.msec.2020.111606
162. Ding RB, Chen P, Rajendran BK, et al. Molecular landscape
151. Famm K, Litt B, Tracey KJ, Boyden ES, Slaoui M. Drug and subtype-specific therapeutic response of nasopharyngeal
discovery: a jump-start for electroceuticals. Nature. carcinoma revealed by integrative pharmacogenomics. Nat
2013;496(7444):159-161. Commun. 2021;12(1):3046.
doi: 10.1038/496159a doi: 10.1038/s41467-021-23379-3
152. Birmingham K, Gradinaru V, Anikeeva P, et al. Bioelectronic 163. Lucky SS, Law M, Lui MH, et al. Patient-derived
medicines: a research roadmap. Nat Rev Drug Discov. nasopharyngeal cancer organoids for disease modeling and
2014;13(6):399-400. radiation dose optimization. Front Oncol. 2021;11:622244.
doi: 10.1038/nrd4351 doi: 10.3389/fonc.2021.622244
153. Sarreal RR, Bhatti P. Characterization and miniaturization 164. Wang XW, Xia TL, Tang HC, et al. Establishment of a
of silver-nanoparticle microcoil via aerosol jet printing patient-derived organoid model and living biobank for
techniques for micromagnetic cochlear stimulation. Sensors nasopharyngeal carcinoma. Ann Transl Med. 2022;10(9):526.
(Basel). 2020;20(21):6087. doi: 10.21037/atm-22-1076
doi: 10.3390/s20216087
165. Park W, Bae M, Hwang M, Jang J, Cho DW, Yi HG. 3D
154. Lei IM, Jiang C, Lei CL, et al. 3D printed biomimetic cell-printed hypoxic cancer-on-a-chip for recapitulating
cochleae and machine learning co-modelling provides pathologic progression of solid cancer. J Vis Exp. 2021;(167).
clinical informatics for cochlear implant patients. Nat doi: 10.3791/61945
Commun. 2021;12(1):6260.
doi: 10.1038/s41467-021-26491-6 166. Kankala RK, Wang SB, Chen AZ. Microengineered organ-
on-a-chip platforms towards personalized medicine. Curr
155. Lan X, Liang Y, Vyhlidal M, et al. In vitro maturation and in Pharm Des. 2018;24(45):5354-5366.
vivo stability of bioprinted human nasal cartilage. J Tissue doi: 10.2174/1381612825666190222143542
Eng. 2022;13:20417314221086368.
doi: 10.1177/20417314221086368 167. Liu Z, Zhang W, Pang SW. Migration of immortalized
nasopharyngeal epithelia and carcinoma cells through porous
156. Nuseir A, Hatamleh MM, Alnazzawi A, Al-Rabab’ah M, membrane in 3D platforms. Biosci Rep. 2020;40(6):BSR20194113.
Kamel B, Jaradat E. Direct 3D printing of flexible nasal doi: 10.1042/BSR20194113
prosthesis: optimized digital workflow from scan to fit.
J Prosthodont. 2019;28(1):10-14. 168. Zhang WG, Liu ZY, Pang SW. Separation of nasopharyngeal
doi: 10.1111/jopr.13001 epithelial cells from carcinoma cells on 3D scaffold
platforms. Biotechnol Bioeng. 2021;118(4):1444-1455.
157. Chiesa-Estomba CM, González-García J, Sistiaga-Suarez doi: 10.1002/bit.27640
JA, González Fernández I. A novel computer-aided
design/computer-aided manufacturing (CAD/CAM) 169. Shen Z, Xie Y, Shang X, et al. The manufacturing
3D printing method for nasal framework reconstruction procedure of 3D printed models for endoscopic endonasal
using microvascular free flaps. Cureus. 2022;14(9): transsphenoidal pituitary surgery. Technol Health Care.
e28971. 2020;28(S1):131-150.
doi: 10.7759/cureus.28971 doi: 10.3233/THC-209014
158. Yi HG, Choi YJ, Jung JW, et al. Three-dimensional printing of 170. Huang X, Fan N, Wang HJ, Zhou Y, Li X, Jiang XB. Application
a patient-specific engineered nasal cartilage for augmentative of 3D printed model for planning the endoscopic endonasal
rhinoplasty. J Tissue Eng. 2019;10:2041731418824797. transsphenoidal surgery. Sci Rep. 2021;11(1):5333.
doi: 10.1177/2041731418824797 doi: 10.1038/s41598-021-84779-5
Volume 10 Issue 4 (2024) 58 doi: 10.36922/ijb.3006

