Page 63 - IJB-10-4
P. 63

International Journal of Bioprinting                                   3D bioprinting in otorhinolaryngology




               doi: 10.1016/S0142-9612(03)00340-5              90.  Brown M, Zhu S, Taylor L, Tabrizian M, Li-Jessen NYK.
                                                                  Unraveling the relevance of tissue‐specific decellularized
            79.  Sarker B, Zehnder T, Rath SN, et al. Oxidized alginate-gelatin
               hydrogel: a favorable matrix for growth and osteogenic   extracellular matrix hydrogels for vocal fold regenerative
               differentiation of adipose-derived stem cells in 3D.  ACS   biomaterials: a comprehensive proteomic and in vitro study.
                                                                  Adv Nanobiomed Res. 2023;3(4):2200095.
               Biomater Sci Eng. 2017;3(8):1730-1737.             doi: 10.1002/anbr.202200095
               doi: 10.1021/acsbiomaterials.7b00188
                                                               91.  Bichara DA, O’Sullivan NA, Pomerantseva I, et al. The
            80.  Ilhan E, Ulag S, Sahin  A, et al. Fabrication  of  tissue-  tissue-engineered auricle: past, present, and future.  Tissue
               engineered tympanic membrane patches using 3D-Printing
               technology. J Mech Behav Biomed Mater. 2021;114:104219.  Eng Part B Rev. 2012;18(1):51-61.
               doi: 10.1016/j.jmbbm.2020.104219                   doi: 10.1089/ten.teb.2011.0326
                                                               92.  Jang CH, Koo Y, Kim G. ASC/chondrocyte-laden alginate
            81.  Schwarz S, Kuth S, Distler T, et al. 3D printing and   hydrogel/PCL hybrid scaffold fabricated using 3D printing
               characterization of human nasoseptal chondrocytes laden   for auricle regeneration. Carbohydr Polym. 2020;248:116776.
               dual crosslinked oxidized alginate-gelatin hydrogels      doi: 10.1016/j.carbpol.2020.116776
               for cartilage repair approaches.  Mater Sci Eng C.
               2020;116:111189.                                93.  Cooke ME, Ramirez-GarciaLuna JL, Rangel-Berridi K, et
               doi: 10.1016/j.msec.2020.111189                    al. 3D printed polyurethane scaffolds for the repair of bone
                                                                  defects. Front Bioeng Biotechnol. 2020;8:557215.
            82.  Olate-Moya F, Arens L, Wilhelm M, Mateos-Timoneda MA,      doi: 10.3389/fbioe.2020.557215
               Engel E, Palza H. Chondroinductive alginate-based hydrogels
               having graphene oxide for 3D printed scaffold fabrication.   94.  Wen YT, Dai NT, Hsu S hui. Biodegradable water-based
               ACS Appl Mater Interfaces. 2020;12(4):4343-4357.   polyurethane scaffolds with a sequential release function
               doi: 10.1021/acsami.9b22062                        for cell-free cartilage tissue engineering.  Acta Biomater.
                                                                  2019;88:301-313.
            83.  Moon D, Lee M, Sun J, Song KH, Doh J. Jammed      doi: 10.1016/j.actbio.2019.02.044
               microgel‐based inks for 3D printing of complex structures
               transformable via pH/temperature variations.  Macromol   95.  Li S, Tallia F, Mohammed AA, Stevens MM, Jones JR.
               Rapid Commun. 2022;43(19):2200271.                 Scaffold channel size influences stem cell differentiation
               doi: 10.1002/marc.202200271                        pathway in 3-D printed silica hybrid scaffolds for cartilage
                                                                  regeneration. Biomater Sci. 2020;8(16):4458-4466.
            84.  Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional      doi: 10.1039/C9BM01829H
               printing of complex biological structures by freeform
               reversible embedding of suspended hydrogels.  Sci Adv.   96.  Park JH, Ahn M, Park SH, et al. 3D bioprinting of a trachea-
               2015;1(9):e1500758.                                mimetic cellular construct of a clinically relevant size.
               doi: 10.1126/sciadv.1500758                        Biomaterials. 2021;279:121246.
                                                                  doi: 10.1016/j.biomaterials.2021.121246
            85.  Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini
               A, Dokmeci MR. Bioinks for 3D bioprinting: an overview.   97.  Heuer RA, Nella KT, Chang HT, et al. Three-dimensional
               Biomater Sci. 2018;6(5):915.                       otic neuronal progenitor spheroids derived from human
               doi: 10.1039/c7bm00765e                            embryonic stem cells.  Tissue Eng Part A. 2021;27(3-4):
                                                                  256-269.
            86.  Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen      doi: 10.1089/ten.tea.2020.0078
               CS. Control of stem cell fate by physical interactions with the
               extracellular matrix. Cell Stem Cell. 2009;5(1):17-26.  98.  Kurihara S, Fujioka M, Hirabayashi M, et al. Otic organoids
               doi: 10.1016/j.stem.2009.06.016                    containing spiral ganglion neuron-like cells derived from
                                                                  human-induced pluripotent stem cells as a model of drug-
            87.  Derby B. Printing and prototyping of tissues and scaffolds.   induced neuropathy.  Stem Cells Transl Med. 2022;11(3):
               Science. 2012;338(6109):921-926.                   282-296.
               doi: 10.1126/science.1226340                       doi: 10.1093/stcltm/szab023
            88.  Shanto PC, Park S, Park M, Lee BT. Physico-biological   99.  Das S, Pati F, Choi YJ, et al. Bioprintable, cell-laden
               evaluation of 3D printed dECM/TOCN/alginate hydrogel   silk  fibroin-gelatin  hydrogel supporting  multilineage
               based scaffolds  for  cartilage  tissue  regeneration.  Biomater   differentiation of stem cells for fabrication of three-
               Adv. 2023;145:213239.                              dimensional tissue constructs.  Acta Biomater. 2015;11:
               doi: 10.1016/j.bioadv.2022.213239                  233-246.
            89.  Yeleswarapu S, Chameettachal S, Pati  F. Integrated  3D      doi: 10.1016/j.actbio.2014.09.023
               printing-based framework—a strategy to fabricate tubular   100. Zhang C, Wang G, Lin H, et al. Cartilage 3D bioprinting for
               structures with mechanocompromised hydrogels. ACS Appl   rhinoplasty using adipose-derived stem cells as seed cells:
               Biomater. 2021;4(9):6982-6992.                     review and recent advances. Cell Prolif. 2023;56(4):e13417.
               doi: 10.1021/acsabm.1c00644                        doi: 10.1111/cpr.13417

            Volume 10 Issue 4 (2024)                        55                                doi: 10.36922/ijb.3006
   58   59   60   61   62   63   64   65   66   67   68