Page 63 - IJB-10-4
P. 63
International Journal of Bioprinting 3D bioprinting in otorhinolaryngology
doi: 10.1016/S0142-9612(03)00340-5 90. Brown M, Zhu S, Taylor L, Tabrizian M, Li-Jessen NYK.
Unraveling the relevance of tissue‐specific decellularized
79. Sarker B, Zehnder T, Rath SN, et al. Oxidized alginate-gelatin
hydrogel: a favorable matrix for growth and osteogenic extracellular matrix hydrogels for vocal fold regenerative
differentiation of adipose-derived stem cells in 3D. ACS biomaterials: a comprehensive proteomic and in vitro study.
Adv Nanobiomed Res. 2023;3(4):2200095.
Biomater Sci Eng. 2017;3(8):1730-1737. doi: 10.1002/anbr.202200095
doi: 10.1021/acsbiomaterials.7b00188
91. Bichara DA, O’Sullivan NA, Pomerantseva I, et al. The
80. Ilhan E, Ulag S, Sahin A, et al. Fabrication of tissue- tissue-engineered auricle: past, present, and future. Tissue
engineered tympanic membrane patches using 3D-Printing
technology. J Mech Behav Biomed Mater. 2021;114:104219. Eng Part B Rev. 2012;18(1):51-61.
doi: 10.1016/j.jmbbm.2020.104219 doi: 10.1089/ten.teb.2011.0326
92. Jang CH, Koo Y, Kim G. ASC/chondrocyte-laden alginate
81. Schwarz S, Kuth S, Distler T, et al. 3D printing and hydrogel/PCL hybrid scaffold fabricated using 3D printing
characterization of human nasoseptal chondrocytes laden for auricle regeneration. Carbohydr Polym. 2020;248:116776.
dual crosslinked oxidized alginate-gelatin hydrogels doi: 10.1016/j.carbpol.2020.116776
for cartilage repair approaches. Mater Sci Eng C.
2020;116:111189. 93. Cooke ME, Ramirez-GarciaLuna JL, Rangel-Berridi K, et
doi: 10.1016/j.msec.2020.111189 al. 3D printed polyurethane scaffolds for the repair of bone
defects. Front Bioeng Biotechnol. 2020;8:557215.
82. Olate-Moya F, Arens L, Wilhelm M, Mateos-Timoneda MA, doi: 10.3389/fbioe.2020.557215
Engel E, Palza H. Chondroinductive alginate-based hydrogels
having graphene oxide for 3D printed scaffold fabrication. 94. Wen YT, Dai NT, Hsu S hui. Biodegradable water-based
ACS Appl Mater Interfaces. 2020;12(4):4343-4357. polyurethane scaffolds with a sequential release function
doi: 10.1021/acsami.9b22062 for cell-free cartilage tissue engineering. Acta Biomater.
2019;88:301-313.
83. Moon D, Lee M, Sun J, Song KH, Doh J. Jammed doi: 10.1016/j.actbio.2019.02.044
microgel‐based inks for 3D printing of complex structures
transformable via pH/temperature variations. Macromol 95. Li S, Tallia F, Mohammed AA, Stevens MM, Jones JR.
Rapid Commun. 2022;43(19):2200271. Scaffold channel size influences stem cell differentiation
doi: 10.1002/marc.202200271 pathway in 3-D printed silica hybrid scaffolds for cartilage
regeneration. Biomater Sci. 2020;8(16):4458-4466.
84. Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional doi: 10.1039/C9BM01829H
printing of complex biological structures by freeform
reversible embedding of suspended hydrogels. Sci Adv. 96. Park JH, Ahn M, Park SH, et al. 3D bioprinting of a trachea-
2015;1(9):e1500758. mimetic cellular construct of a clinically relevant size.
doi: 10.1126/sciadv.1500758 Biomaterials. 2021;279:121246.
doi: 10.1016/j.biomaterials.2021.121246
85. Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini
A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. 97. Heuer RA, Nella KT, Chang HT, et al. Three-dimensional
Biomater Sci. 2018;6(5):915. otic neuronal progenitor spheroids derived from human
doi: 10.1039/c7bm00765e embryonic stem cells. Tissue Eng Part A. 2021;27(3-4):
256-269.
86. Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen doi: 10.1089/ten.tea.2020.0078
CS. Control of stem cell fate by physical interactions with the
extracellular matrix. Cell Stem Cell. 2009;5(1):17-26. 98. Kurihara S, Fujioka M, Hirabayashi M, et al. Otic organoids
doi: 10.1016/j.stem.2009.06.016 containing spiral ganglion neuron-like cells derived from
human-induced pluripotent stem cells as a model of drug-
87. Derby B. Printing and prototyping of tissues and scaffolds. induced neuropathy. Stem Cells Transl Med. 2022;11(3):
Science. 2012;338(6109):921-926. 282-296.
doi: 10.1126/science.1226340 doi: 10.1093/stcltm/szab023
88. Shanto PC, Park S, Park M, Lee BT. Physico-biological 99. Das S, Pati F, Choi YJ, et al. Bioprintable, cell-laden
evaluation of 3D printed dECM/TOCN/alginate hydrogel silk fibroin-gelatin hydrogel supporting multilineage
based scaffolds for cartilage tissue regeneration. Biomater differentiation of stem cells for fabrication of three-
Adv. 2023;145:213239. dimensional tissue constructs. Acta Biomater. 2015;11:
doi: 10.1016/j.bioadv.2022.213239 233-246.
89. Yeleswarapu S, Chameettachal S, Pati F. Integrated 3D doi: 10.1016/j.actbio.2014.09.023
printing-based framework—a strategy to fabricate tubular 100. Zhang C, Wang G, Lin H, et al. Cartilage 3D bioprinting for
structures with mechanocompromised hydrogels. ACS Appl rhinoplasty using adipose-derived stem cells as seed cells:
Biomater. 2021;4(9):6982-6992. review and recent advances. Cell Prolif. 2023;56(4):e13417.
doi: 10.1021/acsabm.1c00644 doi: 10.1111/cpr.13417
Volume 10 Issue 4 (2024) 55 doi: 10.36922/ijb.3006

