Page 62 - IJB-10-4
P. 62

International Journal of Bioprinting                                   3D bioprinting in otorhinolaryngology




               doi: 10.1021/jacsau.3c00281                     67.  Ilkhanizadeh S, Teixeira A, Hermanson O. Inkjet printing
                                                                  of macromolecules on hydrogels to steer neural stem cell
            55.  Murphy SV, Atala A. 3D bioprinting of tissues and organs.
               Nat Biotechnol. 2014;32(8):773-785.                differentiation. Biomaterials. 2007;28(27):3936-3943.
               doi: 10.1038/nbt.2958                              doi: 10.1016/j.biomaterials.2007.05.018
                                                               68.  Beketov EE, Isaeva VE, Yakovleva ND, et al. Bioprinting of
            56.  Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting   cartilage with bioink based on high-concentration collagen
               for engineering complex tissues. Biotechnol Adv. 2016;34(4):   and chondrocytes. Int J Mol Sci. 2021;22(21).
               422-434.                                           doi: 10.3390/ijms222111351
               doi: 10.1016/j.biotechadv.2015.12.011
                                                               69.  Zhu J, Marchant RE.  Design properties  of hydrogel
            57.  Alhnan MA, Okwuosa TC, Sadia M, Wan KW, Ahmed    tissue-engineering  scaffolds.  Expert Rev Med Devices.
               W, Arafat B. Emergence of 3D printed dosage forms:   2011;8(5):607-626.
               opportunities and challenges.  Pharm Res. 2016;33(8):      doi: 10.1586/erd.11.27
               1817-1832.
               doi: 10.1007/s11095-016-1933-1                  70.  Schuurman W, Levett PA, Pot MW, et al. Gelatin-
                                                                  methacrylamide hydrogels as potential biomaterials for
            58.  Groll J, Burdick JA, Cho DW, et al. A definition of bioinks   fabrication of tissue-engineered cartilage constructs:
               and their distinction from biomaterial inks. Biofabrication.   gelatin-methacrylamide hydrogels as potential biomaterials
               2018;11(1):013001.                                 for fabrication. Macromol Biosci. 2013;13(5):551-561.
               doi: 10.1088/1758-5090/aaec52                      doi: 10.1002/mabi.201200471
            59.  Heid S, Boccaccini AR. Advancing bioinks for 3D bioprinting   71.  Bedell ML, Torres AL, Hogan KJ, et al. Human gelatin-based
               using reactive fillers: a review. Acta Biomater. 2020;113:1-22.  composite  hydrogels  for  osteochondral  tissue  engineering
               doi: 10.1016/j.actbio.2020.06.040                  and their adaptation into bioinks for extrusion, inkjet,
            60.  DeForest CA, Anseth KS. Advances in bioactive hydrogels   and digital light processing bioprinting.  Biofabrication.
               to probe and direct cell fate. Annu Rev Chem Biomol Eng.   2022;14(4).
               2012;3(1):421-444.                                 doi: 10.1088/1758-5090/ac8768
               doi: 10.1146/annurev-chembioeng-062011-080945   72.  Tang P, Song P, Peng Z, et al. Chondrocyte-laden GelMA
            61.  Bertassoni LE, Cardoso JC, Manoharan V, et al. Direct-write   hydrogel  combined  with  3D  printed  PLA  scaffolds  for
               bioprinting  of  cell-laden  methacrylated  gelatin  hydrogels.   auricle regeneration. Mater Sci Eng C. 2021;130:112423.
               Biofabrication. 2014;6(2):024105.                  doi: 10.1016/j.msec.2021.112423
               doi: 10.1088/1758-5082/6/2/024105               73.  Sun T, Feng Z, He W, et al. Novel 3D-printing bilayer GelMA-

            62.  Li W, Mille LS, Robledo JA, Uribe T, Huerta V, Zhang YS.   based hydrogel containing BP,β-TCP and exosomes for
               Recent advances in formulating and processing biomaterial   cartilage-bone integrated repair. Biofabrication. 2023;16(1).
               inks for vat polymerization‐based 3D printing. Adv Healthc      doi: 10.1088/1758-5090/ad04fe
               Mater. 2020;9(15):2000156.                      74.  Humenik M, Winkler A, Scheibel T. Patterning of protein‐
               doi: 10.1002/adhm.202000156                        based materials. Biopolymers. 2021;112(2).
            63.  Seliktar D. Designing cell-compatible hydrogels for      doi: 10.1002/bip.23412
               biomedical  applications.  Science.  2012;336(6085):   75.  Singh YP, Bandyopadhyay A, Mandal BB. 3D bioprinting
               1124-1128.                                         using cross-linker-free silk–gelatin bioink for cartilage
               doi: 10.1126/science.1214804                       tissue engineering. ACS Appl Mater Interfaces. 2019;11(37):
            64.  Guvendiren M, Burdick JA. Engineering synthetic hydrogel   33684-33696.
               microenvironments to instruct stem cells.  Curr  Opin      doi: 10.1021/acsami.9b11644
               Biotechnol. 2013;24(5):841-846.                 76.  Hong H, Seo YB, Kim DY, et al. Digital light processing 3D
               doi: 10.1016/j.copbio.2013.03.009                  printed silk fibroin hydrogel for cartilage tissue engineering.
            65.  Lee V, Singh G, Trasatti JP, et al. Design and fabrication of   Biomaterials. 2020;232:119679.
               human  skin  by  three-dimensional  bioprinting.  Tissue Eng      doi: 10.1016/j.biomaterials.2019.119679
               Part C: Methods. 2014;20(6):473-484.            77.  Gao Q,  Kim BS,  Gao G.  Advanced strategies  for 3D
               doi: 10.1089/ten.tec.2013.0335                     bioprinting of tissue and organ analogs using alginate
                                                                  hydrogel bioinks. Marine Drugs. 2021;19(12):708.
            66.  Xu T, Gregory C, Molnar P, et al. Viability and
               electrophysiology of neural cell structures generated by      doi: 10.3390/md19120708
               the inkjet printing method.  Biomaterials. 2006;27(19):   78.  Drury JL, Mooney DJ. Hydrogels for tissue engineering:
               3580-3588.                                         scaffold design variables and applications.  Biomaterials.
               doi: 10.1016/j.biomaterials.2006.01.048            2003;24(24):4337-4351.




            Volume 10 Issue 4 (2024)                        54                                doi: 10.36922/ijb.3006
   57   58   59   60   61   62   63   64   65   66   67