Page 62 - IJB-10-4
P. 62
International Journal of Bioprinting 3D bioprinting in otorhinolaryngology
doi: 10.1021/jacsau.3c00281 67. Ilkhanizadeh S, Teixeira A, Hermanson O. Inkjet printing
of macromolecules on hydrogels to steer neural stem cell
55. Murphy SV, Atala A. 3D bioprinting of tissues and organs.
Nat Biotechnol. 2014;32(8):773-785. differentiation. Biomaterials. 2007;28(27):3936-3943.
doi: 10.1038/nbt.2958 doi: 10.1016/j.biomaterials.2007.05.018
68. Beketov EE, Isaeva VE, Yakovleva ND, et al. Bioprinting of
56. Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting cartilage with bioink based on high-concentration collagen
for engineering complex tissues. Biotechnol Adv. 2016;34(4): and chondrocytes. Int J Mol Sci. 2021;22(21).
422-434. doi: 10.3390/ijms222111351
doi: 10.1016/j.biotechadv.2015.12.011
69. Zhu J, Marchant RE. Design properties of hydrogel
57. Alhnan MA, Okwuosa TC, Sadia M, Wan KW, Ahmed tissue-engineering scaffolds. Expert Rev Med Devices.
W, Arafat B. Emergence of 3D printed dosage forms: 2011;8(5):607-626.
opportunities and challenges. Pharm Res. 2016;33(8): doi: 10.1586/erd.11.27
1817-1832.
doi: 10.1007/s11095-016-1933-1 70. Schuurman W, Levett PA, Pot MW, et al. Gelatin-
methacrylamide hydrogels as potential biomaterials for
58. Groll J, Burdick JA, Cho DW, et al. A definition of bioinks fabrication of tissue-engineered cartilage constructs:
and their distinction from biomaterial inks. Biofabrication. gelatin-methacrylamide hydrogels as potential biomaterials
2018;11(1):013001. for fabrication. Macromol Biosci. 2013;13(5):551-561.
doi: 10.1088/1758-5090/aaec52 doi: 10.1002/mabi.201200471
59. Heid S, Boccaccini AR. Advancing bioinks for 3D bioprinting 71. Bedell ML, Torres AL, Hogan KJ, et al. Human gelatin-based
using reactive fillers: a review. Acta Biomater. 2020;113:1-22. composite hydrogels for osteochondral tissue engineering
doi: 10.1016/j.actbio.2020.06.040 and their adaptation into bioinks for extrusion, inkjet,
60. DeForest CA, Anseth KS. Advances in bioactive hydrogels and digital light processing bioprinting. Biofabrication.
to probe and direct cell fate. Annu Rev Chem Biomol Eng. 2022;14(4).
2012;3(1):421-444. doi: 10.1088/1758-5090/ac8768
doi: 10.1146/annurev-chembioeng-062011-080945 72. Tang P, Song P, Peng Z, et al. Chondrocyte-laden GelMA
61. Bertassoni LE, Cardoso JC, Manoharan V, et al. Direct-write hydrogel combined with 3D printed PLA scaffolds for
bioprinting of cell-laden methacrylated gelatin hydrogels. auricle regeneration. Mater Sci Eng C. 2021;130:112423.
Biofabrication. 2014;6(2):024105. doi: 10.1016/j.msec.2021.112423
doi: 10.1088/1758-5082/6/2/024105 73. Sun T, Feng Z, He W, et al. Novel 3D-printing bilayer GelMA-
62. Li W, Mille LS, Robledo JA, Uribe T, Huerta V, Zhang YS. based hydrogel containing BP,β-TCP and exosomes for
Recent advances in formulating and processing biomaterial cartilage-bone integrated repair. Biofabrication. 2023;16(1).
inks for vat polymerization‐based 3D printing. Adv Healthc doi: 10.1088/1758-5090/ad04fe
Mater. 2020;9(15):2000156. 74. Humenik M, Winkler A, Scheibel T. Patterning of protein‐
doi: 10.1002/adhm.202000156 based materials. Biopolymers. 2021;112(2).
63. Seliktar D. Designing cell-compatible hydrogels for doi: 10.1002/bip.23412
biomedical applications. Science. 2012;336(6085): 75. Singh YP, Bandyopadhyay A, Mandal BB. 3D bioprinting
1124-1128. using cross-linker-free silk–gelatin bioink for cartilage
doi: 10.1126/science.1214804 tissue engineering. ACS Appl Mater Interfaces. 2019;11(37):
64. Guvendiren M, Burdick JA. Engineering synthetic hydrogel 33684-33696.
microenvironments to instruct stem cells. Curr Opin doi: 10.1021/acsami.9b11644
Biotechnol. 2013;24(5):841-846. 76. Hong H, Seo YB, Kim DY, et al. Digital light processing 3D
doi: 10.1016/j.copbio.2013.03.009 printed silk fibroin hydrogel for cartilage tissue engineering.
65. Lee V, Singh G, Trasatti JP, et al. Design and fabrication of Biomaterials. 2020;232:119679.
human skin by three-dimensional bioprinting. Tissue Eng doi: 10.1016/j.biomaterials.2019.119679
Part C: Methods. 2014;20(6):473-484. 77. Gao Q, Kim BS, Gao G. Advanced strategies for 3D
doi: 10.1089/ten.tec.2013.0335 bioprinting of tissue and organ analogs using alginate
hydrogel bioinks. Marine Drugs. 2021;19(12):708.
66. Xu T, Gregory C, Molnar P, et al. Viability and
electrophysiology of neural cell structures generated by doi: 10.3390/md19120708
the inkjet printing method. Biomaterials. 2006;27(19): 78. Drury JL, Mooney DJ. Hydrogels for tissue engineering:
3580-3588. scaffold design variables and applications. Biomaterials.
doi: 10.1016/j.biomaterials.2006.01.048 2003;24(24):4337-4351.
Volume 10 Issue 4 (2024) 54 doi: 10.36922/ijb.3006

