Page 64 - IJB-10-4
P. 64

International Journal of Bioprinting                                   3D bioprinting in otorhinolaryngology




            101. Lee J, Hong J, Kim W, Kim GH. Bone-derived dECM/  113. Ozbolat IT, Peng W, Ozbolat V. Application areas of 3D
               alginate bioink for fabricating a 3D  cell-laden  mesh   bioprinting. Drug Discov Today. 2016;21(8):1257-1271.
               structure for bone tissue engineering.  Carbohydr Polym.      doi: 10.1016/j.drudis.2016.04.006
               2020;250:116914.                                114. Lee JS, Kim BS, Seo D, Park JH, Cho DW. Three-dimensional
               doi: 10.1016/j.carbpol.2020.116914
                                                                  cell printing of large-volume tissues: application to ear
            102. Bae SW, Lee KW, Park JH, et al. 3D bioprinted artificial   regeneration. Tissue Eng Part C Methods. 2017;23(3):136-145.
               trachea with epithelial cells and chondrogenic-differentiated      doi: 10.1089/ten.tec.2016.0362
               bone marrow-derived mesenchymal stem cells.  IJMS.   115. Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties
               2018;19(6):1624.                                   on printability and cell viability for 3D bioplotting of
               doi: 10.3390/ijms19061624
                                                                  embryonic stem cells. Biofabrication. 2016;8(3):035020.
            103. Csobonyeiova M, Polak S, Zamborsky R, Danisovic L. iPS cell      doi: 10.1088/1758-5090/8/3/035020
               technologies and their prospect for bone regeneration and   116. Chanlalit C, Shukla DR, Fitzsimmons JS, An KN, O’Driscoll
               disease modeling: a mini review. J Adv Res. 2017;8(4):321-327.  SW. Stress shielding around radial head prostheses. J Hand
               doi: 10.1016/j.jare.2017.02.004
                                                                  Surg Am. 2012;37(10):2118-2125.
            104. Liang L, Li Z, Yao B, et al. Extrusion bioprinting of cellular      doi: 10.1016/j.jhsa.2012.06.020
               aggregates improves mesenchymal stem cell proliferation   117. Kim UJ, Park J, Joo Kim H, Wada M, Kaplan DL. Three-
               and differentiation. Biomater Adv. 2023;149:213369.  dimensional aqueous-derived  biomaterial  scaffolds from
               doi: 10.1016/j.bioadv.2023.213369
                                                                  silk fibroin. Biomaterials. 2005;26(15):2775-2785.
            105. Gantumur E, Nakahata M, Kojima M, Sakai S. Extrusion-     doi: 10.1016/j.biomaterials.2004.07.044
               based bioprinting through glucose-mediated enzymatic   118. Wenk E, Merkle HP, Meinel L. Silk fibroin as a vehicle for
               hydrogelation. Int J Bioprint. 2020;6(1):250.      drug delivery applications.  J Control Release. 2011;150(2):
               doi: 10.18063/ijb.v6i1.250
                                                                  128-141.
            106. Lee HJ, Kim YB, Ahn SH, et al. A new approach      doi: 10.1016/j.jconrel.2010.11.007
               for fabricating collagen/ECM-based bioinks using   119. Bradner SA, Galaiya D, Raol N, Kaplan DL, Hartnick CJ.
               preosteoblasts and human adipose stem cells. Adv Healthc   Silk protein bioresorbable, drug-eluting ear tubes: proof-of-
               Mater. 2015;4(9):1359-1368.                        concept. Adv Healthc Mater. 2019;8(3):1801409.
               doi: 10.1002/adhm.201500193
                                                                  doi: 10.1002/adhm.201801409
            107. Faramarzi N, Yazdi IK, Nabavinia M, et al. Patient-specific   120. Williams DF. The language of biomaterials-based
               bioinks for 3D bioprinting of tissue engineering scaffolds.   technologies. Regen Eng Transl Med. 2019;5(1):53-60.
               Adv Healthc Mater. 2018;7(11):1701347.             doi: 10.1007/s40883-018-0088-5
               doi: 10.1002/adhm.201701347
                                                               121. Winkler S, Meyer KV, Heuer C, Kortmann C, Dehne M,
            108. Yu K, Zhang X, Sun Y, et al. Printability during projection-  Bahnemann J. In vitro biocompatibility evaluation of a heat‐
               based 3D bioprinting. Bioact Mater. 2022;11:254-267.  resistant 3D printing material for use in customized cell
               doi: 10.1016/j.bioactmat.2021.09.021
                                                                  culture devices. Eng Life Sci. 2022;22(11):699-708.
            109. He Y, Yang F, Zhao H, Gao Q, Xia B, Fu J. Research on      doi: 10.1002/elsc.202100104
               the  printability  of  hydrogels  in 3D  bioprinting.  Sci Rep.   122. Bernard M, Jubeli E, Pungente MD, Yagoubi N.
               2016;6(1):29977.                                   Biocompatibility  of  polymer-based biomaterials  and
               doi: 10.1038/srep29977
                                                                  medical devices – regulations, in vitro screening and risk-
            110. Kryou C, Theodorakos I, Karakaidos P, Klinakis A,   management. Biomater Sci. 2018;6(8):2025-2053.
               Hatziapostolou A, Zergioti I. Parametric study of jet/droplet      doi: 10.1039/C8BM00518D
               formation process during LIFT printing of living cell-laden   123. Yan Y, Chen H, Zhang H, et al. Vascularized 3D printed
               bioink. Micromachines. 2021;12(11).                scaffolds for promoting bone regeneration.  Biomaterials.
               doi: 10.3390/mi12111408
                                                                  2019;190-191:97-110.
            111. Gopinathan J, Noh I. Recent trends in bioinks for 3D      doi: 10.1016/j.biomaterials.2018.10.033
               printing. Biomater Res. 2018;22(1):11.          124. Nedunchezian S, Banerjee P, Lee CY, et al. Generating
               doi: 10.1186/s40824-018-0122-1
                                                                  adipose stem cell-laden hyaluronic acid-based scaffolds
            112. Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov   using 3D bioprinting via the double crosslinked strategy
               A. Bioink properties before, during and after 3D bioprinting.   for chondrogenesis.  Mater Sci Eng C Mater Biol Appl.
               Biofabrication. 2016;8(3):032002.                  2021;124:112072.
               doi: 10.1088/1758-5090/8/3/032002                  doi: 10.1016/j.msec.2021.112072




            Volume 10 Issue 4 (2024)                        56                                doi: 10.36922/ijb.3006
   59   60   61   62   63   64   65   66   67   68   69