Page 64 - IJB-10-4
P. 64
International Journal of Bioprinting 3D bioprinting in otorhinolaryngology
101. Lee J, Hong J, Kim W, Kim GH. Bone-derived dECM/ 113. Ozbolat IT, Peng W, Ozbolat V. Application areas of 3D
alginate bioink for fabricating a 3D cell-laden mesh bioprinting. Drug Discov Today. 2016;21(8):1257-1271.
structure for bone tissue engineering. Carbohydr Polym. doi: 10.1016/j.drudis.2016.04.006
2020;250:116914. 114. Lee JS, Kim BS, Seo D, Park JH, Cho DW. Three-dimensional
doi: 10.1016/j.carbpol.2020.116914
cell printing of large-volume tissues: application to ear
102. Bae SW, Lee KW, Park JH, et al. 3D bioprinted artificial regeneration. Tissue Eng Part C Methods. 2017;23(3):136-145.
trachea with epithelial cells and chondrogenic-differentiated doi: 10.1089/ten.tec.2016.0362
bone marrow-derived mesenchymal stem cells. IJMS. 115. Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties
2018;19(6):1624. on printability and cell viability for 3D bioplotting of
doi: 10.3390/ijms19061624
embryonic stem cells. Biofabrication. 2016;8(3):035020.
103. Csobonyeiova M, Polak S, Zamborsky R, Danisovic L. iPS cell doi: 10.1088/1758-5090/8/3/035020
technologies and their prospect for bone regeneration and 116. Chanlalit C, Shukla DR, Fitzsimmons JS, An KN, O’Driscoll
disease modeling: a mini review. J Adv Res. 2017;8(4):321-327. SW. Stress shielding around radial head prostheses. J Hand
doi: 10.1016/j.jare.2017.02.004
Surg Am. 2012;37(10):2118-2125.
104. Liang L, Li Z, Yao B, et al. Extrusion bioprinting of cellular doi: 10.1016/j.jhsa.2012.06.020
aggregates improves mesenchymal stem cell proliferation 117. Kim UJ, Park J, Joo Kim H, Wada M, Kaplan DL. Three-
and differentiation. Biomater Adv. 2023;149:213369. dimensional aqueous-derived biomaterial scaffolds from
doi: 10.1016/j.bioadv.2023.213369
silk fibroin. Biomaterials. 2005;26(15):2775-2785.
105. Gantumur E, Nakahata M, Kojima M, Sakai S. Extrusion- doi: 10.1016/j.biomaterials.2004.07.044
based bioprinting through glucose-mediated enzymatic 118. Wenk E, Merkle HP, Meinel L. Silk fibroin as a vehicle for
hydrogelation. Int J Bioprint. 2020;6(1):250. drug delivery applications. J Control Release. 2011;150(2):
doi: 10.18063/ijb.v6i1.250
128-141.
106. Lee HJ, Kim YB, Ahn SH, et al. A new approach doi: 10.1016/j.jconrel.2010.11.007
for fabricating collagen/ECM-based bioinks using 119. Bradner SA, Galaiya D, Raol N, Kaplan DL, Hartnick CJ.
preosteoblasts and human adipose stem cells. Adv Healthc Silk protein bioresorbable, drug-eluting ear tubes: proof-of-
Mater. 2015;4(9):1359-1368. concept. Adv Healthc Mater. 2019;8(3):1801409.
doi: 10.1002/adhm.201500193
doi: 10.1002/adhm.201801409
107. Faramarzi N, Yazdi IK, Nabavinia M, et al. Patient-specific 120. Williams DF. The language of biomaterials-based
bioinks for 3D bioprinting of tissue engineering scaffolds. technologies. Regen Eng Transl Med. 2019;5(1):53-60.
Adv Healthc Mater. 2018;7(11):1701347. doi: 10.1007/s40883-018-0088-5
doi: 10.1002/adhm.201701347
121. Winkler S, Meyer KV, Heuer C, Kortmann C, Dehne M,
108. Yu K, Zhang X, Sun Y, et al. Printability during projection- Bahnemann J. In vitro biocompatibility evaluation of a heat‐
based 3D bioprinting. Bioact Mater. 2022;11:254-267. resistant 3D printing material for use in customized cell
doi: 10.1016/j.bioactmat.2021.09.021
culture devices. Eng Life Sci. 2022;22(11):699-708.
109. He Y, Yang F, Zhao H, Gao Q, Xia B, Fu J. Research on doi: 10.1002/elsc.202100104
the printability of hydrogels in 3D bioprinting. Sci Rep. 122. Bernard M, Jubeli E, Pungente MD, Yagoubi N.
2016;6(1):29977. Biocompatibility of polymer-based biomaterials and
doi: 10.1038/srep29977
medical devices – regulations, in vitro screening and risk-
110. Kryou C, Theodorakos I, Karakaidos P, Klinakis A, management. Biomater Sci. 2018;6(8):2025-2053.
Hatziapostolou A, Zergioti I. Parametric study of jet/droplet doi: 10.1039/C8BM00518D
formation process during LIFT printing of living cell-laden 123. Yan Y, Chen H, Zhang H, et al. Vascularized 3D printed
bioink. Micromachines. 2021;12(11). scaffolds for promoting bone regeneration. Biomaterials.
doi: 10.3390/mi12111408
2019;190-191:97-110.
111. Gopinathan J, Noh I. Recent trends in bioinks for 3D doi: 10.1016/j.biomaterials.2018.10.033
printing. Biomater Res. 2018;22(1):11. 124. Nedunchezian S, Banerjee P, Lee CY, et al. Generating
doi: 10.1186/s40824-018-0122-1
adipose stem cell-laden hyaluronic acid-based scaffolds
112. Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov using 3D bioprinting via the double crosslinked strategy
A. Bioink properties before, during and after 3D bioprinting. for chondrogenesis. Mater Sci Eng C Mater Biol Appl.
Biofabrication. 2016;8(3):032002. 2021;124:112072.
doi: 10.1088/1758-5090/8/3/032002 doi: 10.1016/j.msec.2021.112072
Volume 10 Issue 4 (2024) 56 doi: 10.36922/ijb.3006

