Page 68 - IJB-10-4
P. 68
International Journal of Bioprinting 3D bioprinting in otorhinolaryngology
on tissue-specific matrix hydrogels. Bioact Mater. 2024;32: narrative review. Indian J Otolaryngol Head Neck Surg.
52-65. 2022;74(1):123-126.
doi: 10.1016/j.bioactmat.2023.09.011 doi: 10.1007/s12070-021-02634-5
195. Huo Y, Xu Y, Wu X, et al. Functional trachea reconstruction 203. Gao Q, Niu X, Shao L, et al. 3D printing of complex
using 3D-bioprinted native-like tissue architecture based GelMA-based scaffolds with nanoclay. Biofabrication.
on designable tissue-specific bioinks. Adv Sci (Weinh). 2019;11(3):035006.
2022;9(29):e2202181. doi: 10.1088/1758-5090/ab0cf6
doi: 10.1002/advs.202202181 204. Mihankhah P, Azdast T, Mohammadzadeh H, Hasanzadeh
196. Gao B, Jing H, Gao M, et al. Long-segmental tracheal R, Aghaiee S. Fused filament fabrication of biodegradable
reconstruction in rabbits with pedicled tissue-engineered polylactic acid reinforced by nanoclay as a potential
trachea based on a 3D-printed scaffold. Acta Biomater. biomedical material. J Thermoplast Compos Mater.
2019;97:177-186. 2023;36(3):961-983.
doi: 10.1016/j.actbio.2019.07.043 doi: 10.1177/08927057211044185
197. Weber JF, Rehmani SS, Baig MZ, et al. Novel composite 205. Zheng F, Xiao Y, Liu H, Fan Y, Dao M. Patient-specific
trachea grafts using 3-dimensional printing. JTCVS Open. organoid and organ-on-a-chip: 3D cell-culture meets 3D
2021;5:152-160. printing and numerical simulation. Adv Biol (Weinh).
doi: 10.1016/j.xjon.2020.11.001 2021;5(6):e2000024.
doi: 10.1002/adbi.202000024
198. Tsai AY, Moroi MK, Les AS, et al. Tracheal agenesis:
esophageal airway support with a 3-dimensional-printed 206. Velasco V, Shariati SA, Esfandyarpour R. Microtechnology-
bioresorbable splint. JTCVS Tech. 2021;10:563-568. based methods for organoid models. Microsyst Nanoeng.
doi: 10.1016/j.xjtc.2021.08.037 2020;6:76.
doi: 10.1038/s41378-020-00185-3
199. Yu D, Peng W, Mo X, Zhang Y, Zhang X, He J. Personalized
3D-printed bioresorbable airway external splint for 207. Morrison RJ, Sengupta S, Flanangan CL, Ohye RG, Hollister
tracheomalacia combined with congenital heart disease. SJ, Green GE. Treatment of severe acquired tracheomalacia
Front Bioeng Biotechnol. 2022;10:859777. with a patient-specific, 3D-printed, permanent tracheal splint.
doi: 10.3389/fbioe.2022.859777 JAMA Otolaryngol Head Neck Surg. 2017;143(5):523-525.
doi: 10.1001/jamaoto.2016.3932
200. Greenwood TE, Thomson SL. Embedded 3D printing of
multi-layer, self-oscillating vocal fold models. J Biomech. 208. Goyanes A, Robles Martinez P, Buanz A, Basit AW, Gaisford
2021;121:110388. S. Effect of geometry on drug release from 3D printed
doi: 10.1016/j.jbiomech.2021.110388 tablets. Int J Pharm. 2015;494(2):657-663.
doi: 10.1016/j.ijpharm.2015.04.069
201. Romero RGT, Colton MB, Thomson SL. 3D-printed
synthetic vocal fold models. J Voice. 2021;35(5):685-694. 209. Norman J, Madurawe RD, Moore CMV, Khan MA,
doi: 10.1016/j.jvoice.2020.01.030 Khairuzzaman A. A new chapter in pharmaceutical
manufacturing: 3D-printed drug products. Adv Drug Deliv
202. Tiwari D, Vobilisetty RK, Heer B. Current application and Rev. 2017;108:39-50.
future prospects of 3D printing in otorhinolaryngology-a doi: 10.1016/j.addr.2016.03.001
Volume 10 Issue 4 (2024) 60 doi: 10.36922/ijb.3006

