Page 85 - IJB-10-4
P. 85

International Journal of Bioprinting                          Unique characteristics of 3D-printed microneedles




            26.  Tarbox TN, Watts AB, Cui Z, Williams RO. An update on   38.  Lee K, Lee HC, Lee DS, Jung H. Drawing lithography:
               coating/manufacturing techniques of microneedles.  Drug   three-dimensional fabrication  of an ultrahigh-aspect-ratio
               Deliv Transl Res. 2018;8(6):1828-1843.             microneedle. Adv Mater. 2010;22(4):483-486.
               doi: 10.1007/s13346-017-0466-4                     doi: 10.1002/adma.200902418
            27.  Indermun S, Luttge R, Choonara YE, et al. Current advances   39.  Lee K, Park SH, Lee J, Ryu S, Joo C, Ryu W. Three-step thermal
               in the fabrication of microneedles for transdermal delivery. J   drawing for rapid prototyping of highly customizable
               Control Release. 2014;185:130-138.                 microneedles  for  vascular  tissue  insertion.  Pharmaceutics.
               doi: 10.1016/j.jconrel.2014.04.052                 2019;11(3)100.
                                                                  doi: 10.3390/pharmaceutics11030100
            28.  McAllister DV, Wang PM, Davis SP, et al. Microfabricated
               needles for transdermal delivery of macromolecules and   40.  Lee K, Jung H. Drawing lithography for microneedles:
               nanoparticles:  fabrication  methods  and  transport  studies.   a review of fundamentals and biomedical applications.
               PNAS. 2003;100(24):13755-13760.                    Biomaterials. 2012;33(30):7309-7326.
               doi: 10.1073/pnas.2331316100                       doi: 10.1016/j.biomaterials.2012.06.065
            29.  Henry S, McAllister DV, Allen MG, Prausnitz MR.   41.  Banks SL, Pinninti RR, Gill HS, et al. Transdermal
               Microfabricated microneedles: a novel approach to   delivery of naltrexol and skin permeability lifetime after
               transdermal drug delivery. J Pharm Sci. 1998;87(8):922-925.  microneedle treatment in hairless guinea pigs. J Pharm Sci.
               doi: 10.1021/js980042+                             2010;99(7):3072-3080.
                                                                  doi: 10.1002/jps.22083
            30.  Katwal  R,  Kaur H,  Sharma  G, Naushad M,  Pathania  D.
               Electrochemical synthesized copper oxide nanoparticles for   42.  Li CG, Lee CY, Lee K, Jung H. An optimized hollow
               enhanced photocatalytic and antimicrobial activity.  J Ind   microneedle for minimally invasive blood extraction.
               Eng Chem. 2015;31:173-184.                         Biomed Microdevices. 2013;15(1):17-25.
               doi: 10.1016/j.jiec.2015.06.021                    doi: 10.1007/s10544-012-9683-2
            31.  Wilke N, Mulcahy A, Ye SR, Morrissey A. Process   43.  Arya  J,  Henry  S,  Kalluri  H,  McAllister  DV,  Pewin  WP,
               optimization and characterization of silicon microneedles   Prausnitz MR. Tolerability, usability and acceptability of
               fabricated by  wet etch technology.  Microelectron J.   dissolving microneedle patch administration in human
               2005;36(7):650-656.                                subjects. Biomaterials. 2017;128:1-7.
               doi: 10.1016/j.mejo.2005.04.044                    doi: 10.1016/j.biomaterials.2017.02.040
            32.  Jung JH, Jin SG. Microneedle for transdermal drug   44.  Nejad HR, Sadeqi A, Kiaee G, Sonkusale S. Low-cost and
               delivery: current trends and fabrication.  J Pharm Invest.   cleanroom-free fabrication of microneedles.  Microsyst
               2021;51(5):503-517.                                Nanoeng. 2018;4(1)17073.
               doi: 10.1007/s40005-021-00512-4                    doi: 10.1038/MICRONANO.2017.73
            33.  Li YG, Wu WY, Wang H, Cai JD, Lü T. Fabrication, testing   45.  Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D.
               and simulation of microneedle array based on X-ray   Additive manufacturing (3D printing): a review of materials,
               lithography. Opt Precis Eng. 2018;26(5):1156-1164.  methods, applications and challenges.  Composites, Part B.
               doi: 10.3788/OPE.20182605.1156                     2018;143:172-196.
                                                                  doi: 10.1016/j.compositesb.2018.02.012
            34.  Ajay AP, Dasgupta A, Chatterjee D. Fabrication of
               monolithic SU-8 microneedle arrays having different needle   46.  Khosraviboroujeni A, Mirdamadian SZ, Minaiyan M, Taheri
               geometries using a simplified process.  Int  J Adv  Manuf   A. Preparation and characterization of 3D printed PLA
               Technol. 2021;114(11-12):3615-3626.                microneedle arrays for prolonged transdermal drug delivery of
               doi: 10.1007/s00170-021-07038-x                    estradiol valerate. Drug Deliv Transl Res. 2022;12(5):1195-1208.
                                                                  doi: 10.1007/s13346-021-01006-4
            35.  Arora A, Prausnitz MR, Mitragotri S. Micro-scale devices
               for transdermal drug delivery.  Int J Pharm. 2008;364(2):   47.  Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers
               227-236.                                           for 3D printing and customized additive manufacturing.
               doi: 10.1016/j.ijpharm.2008.08.032                 Chem Rev. 2017;117(15):10212-10290.
                                                                  doi: 10.1021/acs.chemrev.7b00074
            36.  Chiang K, Amal R, Tran T. Photocatalytic degradation of
               cyanide using titanium dioxide modified with copper oxide.   48.  Lee BJ, Hsiao K, Lipkowitz G, Samuelsen T, Tate L, DeSimone
               Adv Environ Res. 2002;6(4):471-485.                JM. Characterization of a 30 microm pixel size CLIP-based
               doi: 10.1016/S1093-0191(01)00074-0                 3D printer and its enhancement through dynamic printing
                                                                  optimization. Addit Manuf. 2022;55:102800.
            37.  Choi CK, Lee KJ, Youn YN, et al. Spatially discrete thermal
               drawing of biodegradable microneedles for vascular drug      doi: 10.1016/j.addma.2022.102800
               delivery. Eur J Pharm Biopharm. 2013;83(2):224-233.  49.  Luzuriaga  MA,  Berry  DR,  Reagan  JC,  Smaldone  RA,
               doi: 10.1016/j.ejpb.2012.10.020                    Gassensmith JJ. Biodegradable 3D printed polymer


            Volume 10 Issue 4 (2024)                        77                                doi: 10.36922/ijb.1896
   80   81   82   83   84   85   86   87   88   89   90