Page 85 - IJB-10-4
P. 85
International Journal of Bioprinting Unique characteristics of 3D-printed microneedles
26. Tarbox TN, Watts AB, Cui Z, Williams RO. An update on 38. Lee K, Lee HC, Lee DS, Jung H. Drawing lithography:
coating/manufacturing techniques of microneedles. Drug three-dimensional fabrication of an ultrahigh-aspect-ratio
Deliv Transl Res. 2018;8(6):1828-1843. microneedle. Adv Mater. 2010;22(4):483-486.
doi: 10.1007/s13346-017-0466-4 doi: 10.1002/adma.200902418
27. Indermun S, Luttge R, Choonara YE, et al. Current advances 39. Lee K, Park SH, Lee J, Ryu S, Joo C, Ryu W. Three-step thermal
in the fabrication of microneedles for transdermal delivery. J drawing for rapid prototyping of highly customizable
Control Release. 2014;185:130-138. microneedles for vascular tissue insertion. Pharmaceutics.
doi: 10.1016/j.jconrel.2014.04.052 2019;11(3)100.
doi: 10.3390/pharmaceutics11030100
28. McAllister DV, Wang PM, Davis SP, et al. Microfabricated
needles for transdermal delivery of macromolecules and 40. Lee K, Jung H. Drawing lithography for microneedles:
nanoparticles: fabrication methods and transport studies. a review of fundamentals and biomedical applications.
PNAS. 2003;100(24):13755-13760. Biomaterials. 2012;33(30):7309-7326.
doi: 10.1073/pnas.2331316100 doi: 10.1016/j.biomaterials.2012.06.065
29. Henry S, McAllister DV, Allen MG, Prausnitz MR. 41. Banks SL, Pinninti RR, Gill HS, et al. Transdermal
Microfabricated microneedles: a novel approach to delivery of naltrexol and skin permeability lifetime after
transdermal drug delivery. J Pharm Sci. 1998;87(8):922-925. microneedle treatment in hairless guinea pigs. J Pharm Sci.
doi: 10.1021/js980042+ 2010;99(7):3072-3080.
doi: 10.1002/jps.22083
30. Katwal R, Kaur H, Sharma G, Naushad M, Pathania D.
Electrochemical synthesized copper oxide nanoparticles for 42. Li CG, Lee CY, Lee K, Jung H. An optimized hollow
enhanced photocatalytic and antimicrobial activity. J Ind microneedle for minimally invasive blood extraction.
Eng Chem. 2015;31:173-184. Biomed Microdevices. 2013;15(1):17-25.
doi: 10.1016/j.jiec.2015.06.021 doi: 10.1007/s10544-012-9683-2
31. Wilke N, Mulcahy A, Ye SR, Morrissey A. Process 43. Arya J, Henry S, Kalluri H, McAllister DV, Pewin WP,
optimization and characterization of silicon microneedles Prausnitz MR. Tolerability, usability and acceptability of
fabricated by wet etch technology. Microelectron J. dissolving microneedle patch administration in human
2005;36(7):650-656. subjects. Biomaterials. 2017;128:1-7.
doi: 10.1016/j.mejo.2005.04.044 doi: 10.1016/j.biomaterials.2017.02.040
32. Jung JH, Jin SG. Microneedle for transdermal drug 44. Nejad HR, Sadeqi A, Kiaee G, Sonkusale S. Low-cost and
delivery: current trends and fabrication. J Pharm Invest. cleanroom-free fabrication of microneedles. Microsyst
2021;51(5):503-517. Nanoeng. 2018;4(1)17073.
doi: 10.1007/s40005-021-00512-4 doi: 10.1038/MICRONANO.2017.73
33. Li YG, Wu WY, Wang H, Cai JD, Lü T. Fabrication, testing 45. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D.
and simulation of microneedle array based on X-ray Additive manufacturing (3D printing): a review of materials,
lithography. Opt Precis Eng. 2018;26(5):1156-1164. methods, applications and challenges. Composites, Part B.
doi: 10.3788/OPE.20182605.1156 2018;143:172-196.
doi: 10.1016/j.compositesb.2018.02.012
34. Ajay AP, Dasgupta A, Chatterjee D. Fabrication of
monolithic SU-8 microneedle arrays having different needle 46. Khosraviboroujeni A, Mirdamadian SZ, Minaiyan M, Taheri
geometries using a simplified process. Int J Adv Manuf A. Preparation and characterization of 3D printed PLA
Technol. 2021;114(11-12):3615-3626. microneedle arrays for prolonged transdermal drug delivery of
doi: 10.1007/s00170-021-07038-x estradiol valerate. Drug Deliv Transl Res. 2022;12(5):1195-1208.
doi: 10.1007/s13346-021-01006-4
35. Arora A, Prausnitz MR, Mitragotri S. Micro-scale devices
for transdermal drug delivery. Int J Pharm. 2008;364(2): 47. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers
227-236. for 3D printing and customized additive manufacturing.
doi: 10.1016/j.ijpharm.2008.08.032 Chem Rev. 2017;117(15):10212-10290.
doi: 10.1021/acs.chemrev.7b00074
36. Chiang K, Amal R, Tran T. Photocatalytic degradation of
cyanide using titanium dioxide modified with copper oxide. 48. Lee BJ, Hsiao K, Lipkowitz G, Samuelsen T, Tate L, DeSimone
Adv Environ Res. 2002;6(4):471-485. JM. Characterization of a 30 microm pixel size CLIP-based
doi: 10.1016/S1093-0191(01)00074-0 3D printer and its enhancement through dynamic printing
optimization. Addit Manuf. 2022;55:102800.
37. Choi CK, Lee KJ, Youn YN, et al. Spatially discrete thermal
drawing of biodegradable microneedles for vascular drug doi: 10.1016/j.addma.2022.102800
delivery. Eur J Pharm Biopharm. 2013;83(2):224-233. 49. Luzuriaga MA, Berry DR, Reagan JC, Smaldone RA,
doi: 10.1016/j.ejpb.2012.10.020 Gassensmith JJ. Biodegradable 3D printed polymer
Volume 10 Issue 4 (2024) 77 doi: 10.36922/ijb.1896

