Page 86 - IJB-10-4
        P. 86
     International Journal of Bioprinting                          Unique characteristics of 3D-printed microneedles
               microneedles  for  transdermal  drug  delivery.  Lab Chip.      doi: 10.1021/acsami.1c21489
               2018;18(8):1223-1230.                           61.  Li  R,  Liu  X,  Yuan  X,  et  al.  Fast  customization  of  hollow
               doi: 10.1039/c8lc00098k
                                                                  microneedle patches for insulin delivery.  Int J Bioprint.
            50.  Yao W, Li D, Zhao Y, et al. 3D printed multi-functional   2022;8(2):124-135.
               hydrogel microneedles based on high-precision digital light      doi: 10.18063/ijb.v8i2.553
               processing. Micromachines. 2020;11(1)17.
               doi: 10.3390/mi11010017                         62.  Fiedler S, Irsig R, Gieseke M, et al. Material processing with
                                                                  femtosecond laser pulses for medical applications. Biomed
            51.  Ovsianikov A, Chichkov B, Mente P, Monteiro-Riviere NA,   Tech. 2012;57:603-605.
               Doraiswamy A, Narayan RJ. Two photon polymerization      doi: 10.1515/bmt-2012-4405
               of polymer-ceramic hybrid materials for transdermal drug
               delivery. Int J Appl Ceram Technol. 2007;4(1):22-29.  63.  Khosraviboroujeni A, Mirdamadian SZ, Minaiyan M, Taheri
               doi: 10.1111/j.1744-7402.2007.02115.x              A. Preparation and characterization of 3D printed PLA
                                                                  microneedle arrays for prolonged transdermal drug delivery of
            52.  Liao C, Anderson W, Antaw F, Trau M. Two-photon   estradiol valerate. Drug Deliv Transl Res. 2022;12(5):1195-1208.
               nanolithography of tailored hollow three-dimensional      doi: 10.1007/s13346-021-01006-4
               microdevices for biosystems.  ACS Omega. 2019;4(1):
               1401-1409.                                      64.  Wu L, Park J, Kamaki Y, Kim B. Optimization of the fused
               doi: 10.1021/acsomega.8b03164                      deposition modeling-based fabrication process for polylactic
                                                                  acid microneedles. Microsyst Nanoeng. 2021;7(1):58.
            53.  Szeto  B, Aksit  A, Valentini C,  et al. Novel 3D-printed      doi: 10.1038/s41378-021-00284-9
               hollow microneedles facilitate safe, reliable, and informative
               sampling of perilymph from guinea pigs.  Hear Res.   65.  Wu M, Zhang Y, Huang H, et al. Assisted 3D printing of
               2021;400:108141.                                   microneedle patches for minimally invasive glucose control
               doi: 10.1016/j.heares.2020.108141                  in diabetes. Mater Sci Eng, C. 2020;117:111299.
                                                                  doi: 10.1016/j.msec.2020.111299
            54.  Li R, Zhang L, Jiang X, et al. 3D-printed microneedle arrays
               for drug delivery. J Control Release. 2022;350:933-948.  66.  Li Y, Chen K, Pang Y, et al. Multifunctional microneedle
               doi: 10.1016/j.jconrel.2022.08.022                 patches via direct ink drawing of nanocomposite inks
                                                                  for personalized transdermal drug delivery.  ACS Nano.
            55.  Cordeiro AS, Tekko IA, Jomaa MH, et al. Two-photon   2023;17(20):19925-19937.
               polymerisation 3D printing of microneedle array templates      doi: 10.1021/acsnano.3c04758
               with versatile designs: application in the development of
               polymeric drug delivery systems. Pharm Res. 2020;37(9):174.  67.  Yadav V, Sharma PK, Murty US, et al. 3D printed
               doi: 10.1007/s11095-020-02887-9                    hollow microneedles array using stereolithography for
                                                                  efficient transdermal delivery of rifampicin.  Int J Pharm.
            56.  Xenikakis I, Tsongas K, Tzimtzimis EK, et al. Fabrication   2021;605:120815.
               of hollow microneedles using liquid crystal display (LCD)      doi: 10.1016/j.ijpharm.2021.120815
               vat polymerization 3D printing technology for transdermal
               macromolecular delivery. Int J Pharm. 2021;597:120303.  68.  Krieger KJ, Bertollo N, Dangol M, Sheridan JT, Lowery
               doi: 10.1016/j.ijpharm.2021.120303                 MM, O’Cearbhaill ED. Simple and customizable method for
                                                                  fabrication of  high-aspect  ratio  microneedle  molds using
            57.  Xenikakis I, Tsongas K, Tzimtzimis EK, et al. Transdermal   low-cost 3D printing. Microsyst Nanoeng. 2019;5(1):42.
               delivery of insulin across human skin in vitro with 3D      doi: 10.1038/s41378-019-0088-8
               printed hollow microneedles. J Drug Delivery Sci Technol.
               2022;67102891.                                  69.  Deng S, Wu J, Dickey MD, Zhao Q, Xie T. Rapid open-air
               doi: 10.1016/j.jddst.2021.102891                   digital light 3D printing of thermoplastic polymer.  Adv
                                                                  Mater. 2019;31(39):1903970.
            58.  Johnson AR, Caudill CL, Tumbleston JR, et al. Single-step      doi: 10.1002/adma.201903970
               fabrication of  computationally designed microneedles
               by continuous liquid interface production.  PLoS One.   70.  Lim SH, Ng JY, Kang L. Three-dimensional printing of a
               2016;11(9):e0162518.                               microneedle array on personalized curved surfaces for
               doi: 10.1371/journal.pone.0162518                  dual-pronged treatment of trigger finger.  Biofabrication.
                                                                  2017;9(1):015010.
            59.  Caudill CL, Perry JL, Tian S, Luft JC, DeSimone JM. Spatially
               controlled coating of continuous liquid Interface production      doi: 10.1088/1758-5090/9/1/015010
               microneedles for transdermal protein delivery. J Controlled   71.  Shin D, Hyun J. Silk fibroin microneedles fabricated by
               Release. 2018;284:122-132.                         digital light processing 3D printing.  J  Ind  Eng  Chem.
               doi: 10.1016/j.jconrel.2018.05.042                 2021;95:126-133.
                                                                  doi: 10.1016/j.jiec.2020.12.011
            60.  Liu X, Li R, Yuan X, et al. Fast customization of microneedle
               arrays by static optical projection lithography.  ACS Appl   72.  Faraji Rad Z, Prewett PD, Davies GJ. Rapid prototyping and
               Mater Interfaces. 2021;13(50):60522-60530.         customizable microneedle design: ultra-sharp microneedle
            Volume 10 Issue 4 (2024)                        78                                doi: 10.36922/ijb.1896





