Page 89 - IJB-10-4
P. 89

International Journal of Bioprinting                          Unique characteristics of 3D-printed microneedles




            119. Shikida M, Hasada T, Sato K. Fabrication of a hollow needle   alloy microneedle for applying to Bio-MEM. Trans Jpn Soc
               structure by dicing, wet etching and metal deposition.  J   Mech Eng, Part A. 2006;72(4):471-477.
               Micromech Microeng. 2006;16(10):2230-2239.         doi: 10.1299/kikaia.72.471
               doi: 10.1088/0960-1317/16/10/041
                                                               132. Hegarty C, McKillop S, Dooher T, Dixon D, Davis J.
            120. Lin L, Wang YQ, Cai MK, et al. Multimicrochannel   Composite microneedle arrays modified with palladium
               microneedle microporation platform for enhanced    nanoclusters for electrocatalytic detection of peroxide. IEEE
               intracellular  drug  delivery.  Adv  Funct  Mater.   Sens Lett. 2019;3(9):8809207.
               2022;32(21):2109187.                               doi: 10.1109/LSENS.2019.2935831
               doi: 10.1002/adfm.202109187                     133. Omolu A, Bailly M, Day RM. Assessment of solid
            121. Ren  Y,  Li  J,  Chen  Y,  et  al.  Customized  flexible  hollow   microneedle rollers to enhance transmembrane delivery of
               microneedles for psoriasis treatment with reduced-dose   doxycycline and inhibition of MMP activity.  Drug  Deliv.
               drug. Bioeng Transl Med. 2023;8(4):e10530.         2017;24(1):942-951.
               doi: 10.1002/btm2.10530                            doi: 10.1080/10717544.2017.1337826
            122. Wang PM, Cornwell M, Hill J, Prausnitz MR. Precise   134. Ita K. Ceramic microneedles and hollow microneedles for
               microinjection into skin using hollow microneedles. J Invest   transdermal drug delivery: two decades of research. J Drug
               Dermatol. 2006;126(5):1080-1087.                   Delivery Sci Technol. 2018;44:314-322.
               doi: 10.1038/sj.jid.5700150                        doi: 10.1016/j.jddst.2018.01.004
            123. Martanto W, Moore JS, Kashlan O, et al. Microinfusion   135. Mishra R, Pramanick B, Maiti TK, Bhattacharyya TK. Glassy
               using hollow microneedles. Pharm Res. 2006;23(1):104-113.  carbon microneedles—new transdermal drug delivery
               doi: 10.1007/s11095-005-8498-8                     device derived from a scalable C-MEMS process. Microsyst
                                                                  Nanoeng. 2018;4(1):38.
            124. Yeung C, Chen S, King B, et al. A 3D-printed microfluidic-     doi: 10.1038/s41378-018-0039-9
               enabled hollow microneedle architecture for transdermal
               drug delivery. Biomicrofluidics. 2019;13(6):064125.  136. Blyweert P, Nicolas V, Fierro V, Celzard A. 3D printing
               doi: 10.1063/1.5127778                             of carbon-based materials: a review.  Carbon. 2021;183:
                                                                  449-485.
            125. Li Q, Xu R, Fan H, et al. Smart mushroom-inspired imprintable      doi: 10.1016/j.carbon.2021.07.036
               and lightly detachable (MILD) microneedle patterns
               for effective COVID-19 vaccination and decentralized   137. Marsden AJ, Papageorgiou DG, Vallés C, et al. Electrical
               information storage. ACS Nano. 2021;16(5):7512-7524.  percolation in graphene-polymer composites. 2D Materials.
               doi: 10.1021/acsnano.1c10718                       2018;5(3):032003.
                                                                  doi: 10.1088/2053-1583/aac055
            126. Xu R, Guo H, Chen X, et al. Smart hydrothermally responsive
               microneedle for topical tumor treatment.  J Controlled   138. Bagotia N, Choudhary V, Sharma DK. A review on the
               Release. 2023;358:566-578.                         mechanical, electrical and EMI shielding properties of
               doi: 10.1016/j.jconrel.2023.05.008                 carbon nanotubes and graphene reinforced polycarbonate
                                                                  nanocomposites. Polym Adv Technol. 2018;29(6):1547-1567.
            127. Ma GJ, Shi LT, Wu CW. Biomechanical property of a      doi: 10.1002/pat.4277
               natural  microneedle:  the  caterpillar  spine.  J Med Devices.
               2011;5(3):034502.                               139. Tilve-Martinez D, Neri W, Horaud D, et al. Graphene
               doi: 10.1115/1.4004651                             oxide based transparent resins for accurate 3D printing of
                                                                  conductive materials. Adv Funct Mater. 2023;33(21):2214954.
            128. Ma G, Wu C. Microneedle, bio-microneedle and bio-inspired      doi: 10.1002/adfm.202214954
               microneedle: a review. J Controlled Release. 2017;251:11-23.
               doi: 10.1016/j.jconrel.2017.02.011              140. Dornelas PHG, Santos TG, Oliveira JP. Micro-metal additive
                                                                  manufacturing  – state-of-art and perspectives.  Int J Adv
            129. Chen  Z,  Lin  Y,  Lee  W,  et  al.  Additive  manufacturing  of   Manuf Technol. 2022;122(9-10):3547-3564.
               honeybee-inspired microneedle for easy skin insertion      doi: 10.1007/s00170-022-10110-9
               and difficult removal.  ACS Appl Mater Interfaces.
               2018;10(35):29338-29346.                        141. McKee S, Lutey A, Sciancalepore C, Poli F, Selleri S,
               doi: 10.1021/acsami.8b09563                        Cucinotta A. Microfabrication of polymer microneedle
                                                                  arrays using two-photon polymerization.  J Photochem
            130. Han D, Morde RS, Mariani S, et al. 4D printing of a bioinspired   Photobiol, B. 2022;229:112424.
               microneedle array with backward-facing barbs for enhanced      doi: 10.1016/j.jphotobiol.2022.112424
               tissue adhesion. Adv Funct Mater. 2020;30(11):1909197.
               doi: 10.1002/adfm.201909197                     142. Chen Z, Ren L, Li J, et al. Rapid fabrication of microneedles
                                                                  using  magnetorheological  drawing  lithography.  Acta
            131. Nakamachi E, Jinninn S, Uetsuji Y, Tsuchiya K, Yamamoto   Biomater. 2018;65:283-291.
               H. Sputter generating and characterization of a titanium      doi: 10.1016/j.actbio.2017.10.030


            Volume 10 Issue 4 (2024)                        81                                doi: 10.36922/ijb.1896
   84   85   86   87   88   89   90   91   92   93   94