Page 87 - IJB-10-4
P. 87
International Journal of Bioprinting Unique characteristics of 3D-printed microneedles
fabrication using two-photon polymerization and low-cost 85. Song J-M, Kim Y-C, Barlow PG, et al. Improved protection
micromolding techniques. Manuf Lett. 2021;30:39-43. against avian influenza H5N1 virus by a single vaccination
doi: 10.1016/j.mfglet.2021.10.007 with virus-like particles in skin using microneedles. Antiviral
Res. 2010;88(2):244-247.
73. Rad ZF, Nordon RE, Anthony CJ, et al. High-fidelity
replication of thermoplastic microneedles with open doi: 10.1016/j.antiviral.2010.09.001
microfluidic channels. Microsyst Nanoeng. 2017;3:17034. 86. Ogai N, Nonaka I, Toda Y, et al. Enhanced immunity in
doi: 10.1038/micronano.2017.34 intradermal vaccination by novel hollow microneedles. Skin
74. Pere CPP, Economidou SN, Lall G, et al. 3D printed Res Technol. 2018;24(4):630-635.
microneedles for insulin skin delivery. Int J Pharm. doi: 10.1111/srt.12576
2018;544(2):425-432. 87. Chen MC, Huang SF, Lai KY, Ling MH. Fully embeddable
doi: 10.1016/j.ijpharm.2018.03.031 chitosan microneedles as a sustained release depot for
75. Uddin MJ, Scoutaris N, Economidou SN, et al. 3D printed intradermal vaccination. Biomaterials. 2013;34(12):3077-3086.
microneedles for anticancer therapy of skin tumours. Mater doi: 10.1016/j.biomaterials.2012.12.041
Sci Eng, C. 2020;107:110248. 88. Caudill C, Perry JL, Iliadis K, et al. Transdermal vaccination
doi: 10.1016/j.msec.2019.110248 via 3D-printed microneedles induces potent humoral and
76. Kruth JP. Material incress manufacturing by rapid cellular immunity. PNAS. 2021;118(39):e2102595118.
prototyping techniques. CIRP Ann. 1991;40(2):603-614. doi: 10.1073/pnas.2102595118
doi: 10.1016/S0007-8506(07)61136-6 89. Lim SH, Tiew WJ, Zhang J, Ho PCL, Kachouie NN, Kang
77. Chen ZE, Wu XH, Tomus D, Davies CHJ. Surface roughness L. Geometrical optimisation of a personalised microneedle
of selective laser melted Ti-6Al-4V alloy components. Addit eye patch for transdermal delivery of anti-wrinkle small
Manuf. 2018;21:91-103. peptide. Biofabrication. 2020;12(3):035003.
doi: 10.1016/j.addma.2018.02.009 doi: 10.1088/1758-5090/ab6d37
78. Economidou SN, Pere CPP, Reid A, et al. 3D printed microneedle 90. Zhang Q, Shi L, He H, et al. Down-regulating scar formation
patches using stereolithography (SLA)for intradermal insulin by microneedles directly via a mechanical communication
delivery. Mater Sci Eng, C. 2019;102:743-755. pathway. ACS Nano. 2022;16(7):10163-10178.
doi: 10.1016/j.msec.2019.04.063 doi: 10.1021/acsnano.1c11016
79. Mathew E, Pitzanti G, dos Santos ALG, Lamprou DA. 91. Yin MR, Zeng YN, Liu HQ, et al. Dissolving microneedle
Optimization of printing parameters for digital light patch integrated with microspheres for long-acting
processing 3D printing of hollow microneedle arrays. hair regrowth therapy. ACS Appl Mater Interfaces.
Pharmaceutics. 2021;13(11):1837. 2023;15(14):17532-17542.
doi: 10.3390/pharmaceutics13111837 doi: 10.1021/acsami.2c22814
80. Moussi K, Bukhamsin A, Hidalgo T, Kosel J. Biocompatible 92. Liu YQ, Yu Q, Luo XJ, Yang L, Cui Y. Continuous
3D printed microneedles for transdermal, intradermal, monitoring of diabetes with an integrated microneedle
and percutaneous applications. Adv Eng Mater. biosensing device through 3D printing. Microsyst Nanoeng.
2020;22(2):1901358. 2021;7(1):75.
doi: 10.1002/adem.201901358 doi: 10.1038/s41378-021-00302-w
81. Ebrahiminejad V, Rad ZF, Prewett PD, Davies GJ. Fabrication 93. Parrilla M, Vanhooydonck A, Johns M, Watts R, De Wael
and testing of polymer microneedles for transdermal drug K. 3D-printed microneedle-based potentiometric sensor for
delivery. Beilstein J Nanotechnol. 2022;13:629-640. pH monitoring in skin interstitial fluid. Sens Actuators, B.
doi: 10.3762/bjnano.13.55 2023;378;133159.
doi: 10.1016/j.snb.2022.133159
82. Gieseke M, Senz V, Vehse M, et al. Additive manufacturing
of drug delivery systems. Biomed Tech. 2012;57:398-401. 94. Wu Y, Tehrani F, Teymourian H, et al. Microneedle aptamer-
doi: 10.1515/bmt-2012-4109 based sensors for continuous, real-time therapeutic drug
monitoring. Anal Chem. 2022;94(23):8335-8345.
83. Plamadeala C, Gosain SR, Hischen F, et al. Bio-inspired
microneedle design for efficient drug/vaccine coating. doi: 10.1021/acs.analchem.2c00829
Biomed Microdevices. 2019;22(1):8. 95. Yang Q, Wang Y, Liu T, et al. Microneedle array encapsulated
doi: 10.1007/s10544-019-0456-z with programmed DNA hydrogels for rapidly sampling
and sensitively sensing of specific MicroRNA in dermal
84. Huang L, Li L, Jiang Y, et al. Tumbler-inspired microneedle
containing robots: achieving rapid self-orientation and interstitial fluid. ACS Nano. 2022;16(11):18366-18375.
peristalsis-resistant adhesion for colonic administration. doi: 10.1021/acsnano.2c06261
Adv Funct Mater. 2023;33(43):23042767. 96. Ishtiaque Hossain N, Tabassum S. Stem-FIT: a microneedle-
doi: 10.1002/adfm.202304276 based multi-parametric sensor for in situ monitoring of
Volume 10 Issue 4 (2024) 79 doi: 10.36922/ijb.1896

