Page 87 - IJB-10-4
        P. 87
     International Journal of Bioprinting                          Unique characteristics of 3D-printed microneedles
               fabrication using two-photon polymerization and low-cost   85.  Song J-M, Kim Y-C, Barlow PG, et al. Improved protection
               micromolding techniques. Manuf Lett. 2021;30:39-43.  against avian influenza H5N1 virus by a single vaccination
               doi: 10.1016/j.mfglet.2021.10.007                  with virus-like particles in skin using microneedles. Antiviral
                                                                  Res. 2010;88(2):244-247.
            73.  Rad ZF, Nordon RE, Anthony CJ, et al. High-fidelity
               replication of thermoplastic microneedles with open      doi: 10.1016/j.antiviral.2010.09.001
               microfluidic channels. Microsyst Nanoeng. 2017;3:17034.  86.  Ogai N, Nonaka I, Toda Y, et al. Enhanced immunity in
               doi: 10.1038/micronano.2017.34                     intradermal vaccination by novel hollow microneedles. Skin
            74.  Pere CPP, Economidou SN, Lall G, et al. 3D printed   Res Technol. 2018;24(4):630-635.
               microneedles  for  insulin  skin  delivery.  Int J Pharm.      doi: 10.1111/srt.12576
               2018;544(2):425-432.                            87.  Chen MC, Huang SF, Lai KY, Ling MH. Fully embeddable
               doi: 10.1016/j.ijpharm.2018.03.031                 chitosan microneedles as a sustained release depot for
            75.  Uddin MJ, Scoutaris N, Economidou SN, et al. 3D printed   intradermal vaccination. Biomaterials. 2013;34(12):3077-3086.
               microneedles for anticancer therapy of skin tumours. Mater      doi: 10.1016/j.biomaterials.2012.12.041
               Sci Eng, C. 2020;107:110248.                    88.  Caudill C, Perry JL, Iliadis K, et al. Transdermal vaccination
               doi: 10.1016/j.msec.2019.110248                    via 3D-printed microneedles induces potent humoral and
            76.  Kruth JP. Material incress manufacturing by rapid   cellular immunity. PNAS. 2021;118(39):e2102595118.
               prototyping techniques. CIRP Ann. 1991;40(2):603-614.     doi: 10.1073/pnas.2102595118
               doi: 10.1016/S0007-8506(07)61136-6              89.  Lim SH, Tiew WJ, Zhang J, Ho PCL, Kachouie NN, Kang
            77.  Chen ZE, Wu XH, Tomus D, Davies CHJ. Surface roughness   L. Geometrical optimisation of a personalised microneedle
               of selective laser melted Ti-6Al-4V alloy components. Addit   eye patch for transdermal delivery of anti-wrinkle small
               Manuf. 2018;21:91-103.                             peptide. Biofabrication. 2020;12(3):035003.
               doi: 10.1016/j.addma.2018.02.009                   doi: 10.1088/1758-5090/ab6d37
            78.  Economidou SN, Pere CPP, Reid A, et al. 3D printed microneedle   90.  Zhang Q, Shi L, He H, et al. Down-regulating scar formation
               patches using stereolithography (SLA)for intradermal insulin   by microneedles directly via a mechanical communication
               delivery. Mater Sci Eng, C. 2019;102:743-755.      pathway. ACS Nano. 2022;16(7):10163-10178.
               doi: 10.1016/j.msec.2019.04.063                    doi: 10.1021/acsnano.1c11016
            79.  Mathew  E,  Pitzanti  G,  dos  Santos  ALG,  Lamprou  DA.   91.  Yin MR, Zeng YN, Liu HQ, et al. Dissolving microneedle
               Optimization of printing parameters for digital light   patch integrated with microspheres for long-acting
               processing 3D  printing  of  hollow microneedle  arrays.   hair regrowth therapy.  ACS Appl Mater Interfaces.
               Pharmaceutics. 2021;13(11):1837.                   2023;15(14):17532-17542.
               doi: 10.3390/pharmaceutics13111837                 doi: 10.1021/acsami.2c22814
            80.  Moussi K, Bukhamsin A, Hidalgo T, Kosel J. Biocompatible   92.  Liu  YQ,  Yu  Q,  Luo  XJ,  Yang  L,  Cui  Y.  Continuous
               3D printed microneedles for transdermal, intradermal,   monitoring of diabetes with an integrated microneedle
               and  percutaneous  applications.  Adv  Eng  Mater.   biosensing device through 3D printing. Microsyst Nanoeng.
               2020;22(2):1901358.                                2021;7(1):75.
               doi: 10.1002/adem.201901358                        doi: 10.1038/s41378-021-00302-w
            81.  Ebrahiminejad V, Rad ZF, Prewett PD, Davies GJ. Fabrication   93.  Parrilla M, Vanhooydonck A, Johns M, Watts R, De Wael
               and testing of polymer microneedles for transdermal drug   K. 3D-printed microneedle-based potentiometric sensor for
               delivery. Beilstein J Nanotechnol. 2022;13:629-640.  pH monitoring in skin interstitial fluid. Sens Actuators, B.
               doi: 10.3762/bjnano.13.55                          2023;378;133159.
                                                                  doi: 10.1016/j.snb.2022.133159
            82.  Gieseke M, Senz V, Vehse M, et al. Additive manufacturing
               of drug delivery systems. Biomed Tech. 2012;57:398-401.  94.  Wu Y, Tehrani F, Teymourian H, et al. Microneedle aptamer-
               doi: 10.1515/bmt-2012-4109                         based sensors for continuous, real-time therapeutic drug
                                                                  monitoring. Anal Chem. 2022;94(23):8335-8345.
            83.  Plamadeala C, Gosain SR, Hischen F, et al. Bio-inspired
               microneedle design for efficient drug/vaccine coating.      doi: 10.1021/acs.analchem.2c00829
               Biomed Microdevices. 2019;22(1):8.              95.  Yang Q, Wang Y, Liu T, et al. Microneedle array encapsulated
               doi: 10.1007/s10544-019-0456-z                     with  programmed  DNA  hydrogels  for  rapidly  sampling
                                                                  and sensitively sensing of specific MicroRNA in dermal
            84.  Huang L, Li L, Jiang Y, et al. Tumbler-inspired microneedle
               containing robots: achieving rapid self-orientation and   interstitial fluid. ACS Nano. 2022;16(11):18366-18375.
               peristalsis-resistant  adhesion  for  colonic  administration.      doi: 10.1021/acsnano.2c06261
               Adv Funct Mater. 2023;33(43):23042767.          96.  Ishtiaque Hossain N, Tabassum S. Stem-FIT: a microneedle-
               doi: 10.1002/adfm.202304276                        based multi-parametric sensor for in situ monitoring of
            Volume 10 Issue 4 (2024)                        79                                doi: 10.36922/ijb.1896





