Page 88 - IJB-10-4
P. 88

International Journal of Bioprinting                          Unique characteristics of 3D-printed microneedles




               salicylic acid and pH levels in live plants. In: Proceedings of   oxygen delivery carriers for wound healing.  ACS Nano.
               the 2022 IEEE 17th International Conference on Nano/Micro   2020;14(5):5901-5908.
               Engineered and Molecular Systems (NEMS).  IEEE;  2022:      doi: 10.1021/acsnano.0c01059
               312-316.                                        108. Liu X, Tian S, Xu S, et al. A pressure-resistant zwitterionic skin
               doi: 10.1109/NEMS54180.2022.9791212
                                                                  sensor for domestic real-time monitoring and pro-healing
            97.  Yi X, Yuan Z, Yu X, Zheng L, Wang C. Novel microneedle   of pressure injury. Biosens Bioelectron. 2022;214114528.
               patch-based surface-enhanced raman spectroscopy sensor      doi: 10.1016/j.bios.2022.114528
               for the detection of pesticide residues.  ACS Appl Mater   109. Shao Y, Dong K, Lu X, Gao B, He B. Bioinspired 3D-printed
               Interfaces. 2023;15(4):4873-4882.                  mxene and spidroin-based near-infrared light-responsive
               doi: 10.1021/acsami.2c17954
                                                                  microneedle scaffolds for efficient wound management. ACS
            98.  Luo H, Shen Y, Liao Z, Yang X, Gao B, He B. Spidroin   Appl Mater Interfaces. 2022;14(51):56525-56534.
               composite  biomimetic  multifunctional  skin  with  meta-     doi: 10.1021/acsami.2c16277
               structure. Adv Mater Technol. 2022;7(6):2101097.  110. Gao B, Guo M, Lyu K, Chu T, He B. Intelligent silk fibroin
               doi: 10.1002/admt.202101097
                                                                  based  microneedle  dressing  (i-SMD).  Adv Funct Mater.
            99.  Tao K, Yu J, Zhang J, et al. Deep-learning enabled active   2021;31(3):2006839.
               biomimetic multifunctional hydrogel electronic skin. ACS      doi: 10.1002/adfm.202006839
               Nano. 2023;17(16):16160-16173.                  111. Chi J, Zhang X, Chen C, Shao C, Zhao Y, Wang Y.
               doi: 10.1021/acsnano.3c05253
                                                                  Antibacterial  and angiogenic  chitosan microneedle
            100. He R, Liu H, Fang T, et al. A colorimetric dermal tattoo   array  patch  for  promoting  wound  healing.  Bioact Mater.
               biosensor fabricated by microneedle patch for multiplexed   2020;5(2):253-259.
               detection  of  health-related  biomarkers.  Adv Sci.      doi: 10.1016/j.bioactmat.2020.02.004
               2021;8(24):2103030.                             112. Petlin DG, Tverdokhlebov SI, Anissimov YG. Plasma
               doi: 10.1002/advs.202103030
                                                                  treatment as an efficient tool for controlled drug release
            101. Forvi E, Bedoni M, Carabalona R, et al. Preliminary   from  polymeric  materials:  a  review.  J Controlled Release.
               technological  assessment  of microneedles-based  dry   2017;266:57-74.
               electrodes for biopotential monitoring in clinical      doi: 10.1016/j.jconrel.2017.09.023
               examinations. Sens Actuators, A. 2012;180:177-186.  113. Cárcamo-Martínez Á, Mallon B, Domínguez-Robles J,
               doi: 10.1016/j.sna.2012.04.019
                                                                  Vora LK, Anjani QK, Donnelly RF. Hollow microneedles:
            102. Griss P, Tolvanen-Laakso HK, Meriläinen P, Stemme G.   a perspective in biomedical applications.  Int J Pharm.
               Characterization  of micromachined  spiked  biopotential   2021;599120455.
               electrodes. IEEE Trans Biomed Eng. 2002;49(6):597-604.     doi: 10.1016/j.ijpharm.2021.120455
               doi: 10.1109/TBME.2002.1001974
                                                               114. Kashaninejad N, Munaz A, Moghadas H, Yadav S, Umer M,
            103. Chen KY, Ren L, Chen ZP, Pan CF, Zhou W, Jiang LL.   Nguyen NT. Microneedle arrays for sampling and sensing
               Fabrication of micro-needle electrodes for bio-signal   skin interstitial fluid. Chemosensors. 2021;9(4):83.
               recording by a magnetization-induced self-assembly      doi: 10.3390/chemosensors9040083
               method. Sensors. 2016;16(9):1533.               115. Zhu MW, Li HW, Chen XL, Tang YF, Lu MH, Chen YF. Silica
               doi: 10.3390/s16091533
                                                                  needle template fabrication of metal hollow microneedle
            104. Salvo P, Raedt R, Carrette E, Schaubroeck D, Vanfleteren   arrays. J Micromech Microeng. 2009;19(11):115010.
               J, Cardon L. A 3D printed dry electrode for ECG/EEG      doi: 10.1088/0960-1317/19/11/115010
               recording. Sens Actuators, A. 2012;174:96-102.  116. Kim K, Lee JB. High aspect ratio tapered hollow metallic
               doi: 10.1016/j.sna.2011.12.017
                                                                  microneedle arrays with microfluidic interconnector.
            105. Ren L, Jiang Q, Chen Z, et al. Flexible microneedle array   Microsyst Technol. 2007;13(3-4):231-235.
               electrode using magnetorheological drawing lithography for      doi: 10.1007/s00542-006-0221-0
               bio-signal monitoring. Sens Actuators, A. 2017;268:38-45.  117. Norman JJ, Choi SO, Tong NT, et al. Hollow microneedles for
               doi: 10.1016/j.sna.2017.10.042
                                                                  intradermal injection fabricated by sacrificial micromolding
            106. Zhang X, Chen G, Sun L, Ye F, Shen X, Zhao Y. Claw-inspired   and selective electrodeposition.  Biomed Microdevices.
               microneedle patches with liquid metal encapsulation   2013;15(2):203-210.
               for accelerating incisional wound healing.  Chem Eng J.      doi: 10.1007/s10544-012-9717-9
               2021;406126741.                                 118. Oh J, Liu K, Medina T, Kralick F, Noh H. A novel microneedle
               doi: 10.1016/j.cej.2020.126741
                                                                  array for the treatment of hydrocephalus. Microsyst Technol.
            107. Zhang X, Chen G, Liu Y, Sun L, Sun L, Zhao Y. Black   2014;20(6):1169-1179.
               phosphorus-loaded separable microneedles as responsive      doi: 10.1007/s00542-013-1988-4


            Volume 10 Issue 4 (2024)                        80                                doi: 10.36922/ijb.1896
   83   84   85   86   87   88   89   90   91   92   93