Page 90 - IJB-10-4
P. 90
International Journal of Bioprinting Unique characteristics of 3D-printed microneedles
143. Yung KL, Xu Y, Kang C, et al. Sharp tipped plastic hollow 153. Lee H, Song C, Baik S, Kim D, Hyeon T, Kim D-H. Device-
microneedle array by microinjection moulding. J Micromech assisted transdermal drug delivery. Adv Drug Delivery Rev.
Microeng. 2012;22(1):015016. 2018;127:35-45.
doi: 10.1088/0960-1317/22/1/015016 doi: 10.1016/j.addr.2017.08.009
144. Baek JY, Kang KM, Kim HJ, et al. Manufacturing process 154. Bae WG, Ko H, So JY, et al. Snake fang-inspired stamping
of polymeric microneedle sensors for mass production. patch for transdermal delivery of liquid formulations. Sci
Micromachines. 2021;12(11):1364. Transl Med. 2019;11(503):eaaw3329.
doi: 10.3390/mi12111364 doi: 10.1126/scitranslmed.aaw3329
145. McConville A, Davis J. Transdermal microneedle sensor 155. Zhang X, Wang F, Yu Y, et al. Bio-inspired clamping
arrays based on palladium: polymer composites. Electrochem microneedle arrays from flexible ferrofluid-configured
Commun. 2016;72:162-165. moldings. Sci Bull. 2019;64(15):1110-1117.
doi: 10.1016/j.elecom.2016.09.024 doi: 10.1016/j.scib.2019.06.016
146. Li X, Shan W, Yang Y, et al. Limpet tooth-inspired painless 156. Trautmann A, Roth GL, Nujiqi B, Walther T, Hellmann
microneedles fabricated by magnetic field-assisted 3D R. Towards a versatile point-of-care system combining
printing. Adv Funct Mater. 2021;31(5):2003725. femtosecond laser generated microfluidic channels and
doi: 10.1002/adfm.202003725 direct laser written microneedle arrays. Microsyst Nanoeng.
2019;5(1):6.
147. Nishita M, Park SY, Nishio T, et al. Ror2 signaling regulates
golgi structure and transport through IFT20 for tumor doi: 10.1038/s41378-019-0046-5
invasiveness. Sci Rep. 2017;7(1):1. 157. Gardan J. Additive manufacturing technologies: state of
doi: 10.1038/s41598-016-0028-x the art and trends. In: Badiru AB, Valencia VV, Liu D, eds.
Additive Manufacturing Handbook: Product Development for
148. Chen Z, Ye R, Yang J, et al. Rapidly fabricated microneedle
arrays using magnetorheological drawing lithography the Defense Industry. Boca Raton: CRC Press; 2017: 149-168.
for transdermal drug delivery. ACS Biomater Sci Eng. doi: 10.1201/9781315119106
2019;5(10):5506-5513. 158. Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X. Photo-curing
doi: 10.1021/acsbiomaterials.9b00919 3D printing technique and its challenges. Bioact Mater.
2020;5(1):110-115.
149. Souissi S, Makni C, Belhadj Ammar L, Bousnina O, Kallel
L. Correlation between the intensity of Helicobacter pylori doi: 10.1016/j.bioactmat.2019.12.003
colonization and severity of gastritis: results of a prospective 159. Yang Q, Zhong W, Liu Y, et al. 3D-printed morphology-
study. Helicobacter. 2022;27(4):e12910. customized microneedles: understanding the correlation
doi: 10.1111/hel.12910 between their morphologies and the received qualities.
Int J Pharm. 2023;638122873.
150. Waghule T, Singhvi G, Dubey SK, et al. Microneedles: a
smart approach and increasing potential for transdermal doi: 10.1016/j.ijpharm.2023.122873
drug delivery system. Biomed Pharmacother. 2019;109: 160. Wang Z, Fu R, Han X, et al. Shrinking fabrication of a
1249-1258. glucose-responsive glucagon microneedle patch. Adv Sci.
doi: 10.1016/j.biopha.2018.10.078 2022;9(28):2203274.
doi: 10.1002/advs.202203274
151. Banga AK. Microporation applications for enhancing drug
delivery. Expert Opin Drug Delivery. 2009;6(4):343-354. 161. Zhu Z, Wang J, Pei X, et al. Blue-ringed octopus-inspired
doi: 10.1517/17425240902841935 microneedle patch for robust tissue surface adhesion and
active injection drug delivery. Sci Adv. 2023;9(25):eadh2213.
152. Larrañeta E, Lutton REM, Woolfson AD, Donnelly RF.
Microneedle arrays as transdermal and intradermal doi: 10.1126/sciadv.adh2213
drug delivery systems: materials science, manufacture 162. Li S, Li C, Khan MI, et al. Microneedle array facilitates
and commercial development. Mater Sci Eng, R. 2016; hepatic sinusoid construction in a large-scale liver-acinus-
104:1-32. chip microsystem. Microsyst Nanoeng. 2023;9(1):75.
doi: 10.1016/j.mser.2016.03.001 doi: 10.1038/s41378-023-00544-w
Volume 10 Issue 4 (2024) 82 doi: 10.36922/ijb.1896

