Page 90 - IJB-10-4
        P. 90
     International Journal of Bioprinting                          Unique characteristics of 3D-printed microneedles
            143. Yung KL, Xu Y, Kang C, et al. Sharp tipped plastic hollow   153. Lee H, Song C, Baik S, Kim D, Hyeon T, Kim D-H. Device-
               microneedle array by microinjection moulding. J Micromech   assisted transdermal drug delivery. Adv Drug Delivery Rev.
               Microeng. 2012;22(1):015016.                       2018;127:35-45.
               doi: 10.1088/0960-1317/22/1/015016                 doi: 10.1016/j.addr.2017.08.009
            144. Baek JY, Kang KM, Kim HJ, et al. Manufacturing process   154. Bae WG, Ko H, So JY, et al. Snake fang-inspired stamping
               of polymeric microneedle sensors for mass production.   patch for transdermal delivery of liquid formulations.  Sci
               Micromachines. 2021;12(11):1364.                   Transl Med. 2019;11(503):eaaw3329.
               doi: 10.3390/mi12111364                            doi: 10.1126/scitranslmed.aaw3329
            145. McConville A, Davis J. Transdermal microneedle sensor   155. Zhang X,  Wang F, Yu Y, et al.  Bio-inspired clamping
               arrays based on palladium: polymer composites. Electrochem   microneedle arrays from flexible ferrofluid-configured
               Commun. 2016;72:162-165.                           moldings. Sci Bull. 2019;64(15):1110-1117.
               doi: 10.1016/j.elecom.2016.09.024                  doi: 10.1016/j.scib.2019.06.016
            146. Li X, Shan W, Yang Y, et al. Limpet tooth-inspired painless   156. Trautmann A, Roth GL, Nujiqi B, Walther T, Hellmann
               microneedles fabricated by magnetic field-assisted 3D   R. Towards a versatile point-of-care system combining
               printing. Adv Funct Mater. 2021;31(5):2003725.     femtosecond laser generated microfluidic channels and
               doi: 10.1002/adfm.202003725                        direct laser written microneedle arrays. Microsyst Nanoeng.
                                                                  2019;5(1):6.
            147. Nishita M, Park SY, Nishio T, et al. Ror2 signaling regulates
               golgi  structure  and transport  through IFT20  for  tumor      doi: 10.1038/s41378-019-0046-5
               invasiveness. Sci Rep. 2017;7(1):1.             157. Gardan J. Additive manufacturing technologies: state of
               doi: 10.1038/s41598-016-0028-x                     the art and trends. In: Badiru AB, Valencia VV, Liu D, eds.
                                                                  Additive Manufacturing Handbook: Product Development for
            148. Chen Z, Ye R, Yang J, et al. Rapidly fabricated microneedle
               arrays using magnetorheological drawing lithography   the Defense Industry. Boca Raton: CRC Press; 2017: 149-168.
               for transdermal drug delivery.  ACS Biomater Sci Eng.      doi: 10.1201/9781315119106
               2019;5(10):5506-5513.                           158. Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X. Photo-curing
               doi: 10.1021/acsbiomaterials.9b00919               3D printing technique and its challenges.  Bioact Mater.
                                                                  2020;5(1):110-115.
            149. Souissi S, Makni C, Belhadj Ammar L, Bousnina O, Kallel
               L. Correlation between the intensity of Helicobacter pylori      doi: 10.1016/j.bioactmat.2019.12.003
               colonization and severity of gastritis: results of a prospective   159. Yang Q, Zhong W, Liu Y, et al. 3D-printed morphology-
               study. Helicobacter. 2022;27(4):e12910.            customized microneedles: understanding the correlation
               doi: 10.1111/hel.12910                             between their morphologies and the received qualities.
                                                                  Int J Pharm. 2023;638122873.
            150. Waghule  T, Singhvi G, Dubey SK,  et al.  Microneedles:  a
               smart approach and increasing potential for transdermal      doi: 10.1016/j.ijpharm.2023.122873
               drug delivery system.  Biomed Pharmacother. 2019;109:   160. Wang Z, Fu R, Han X, et al. Shrinking fabrication of a
               1249-1258.                                         glucose-responsive glucagon microneedle patch.  Adv Sci.
               doi: 10.1016/j.biopha.2018.10.078                  2022;9(28):2203274.
                                                                  doi: 10.1002/advs.202203274
            151. Banga AK. Microporation applications for enhancing drug
               delivery. Expert Opin Drug Delivery. 2009;6(4):343-354.  161. Zhu Z, Wang J, Pei X, et al. Blue-ringed octopus-inspired
               doi: 10.1517/17425240902841935                     microneedle patch for robust tissue surface adhesion and
                                                                  active injection drug delivery. Sci Adv. 2023;9(25):eadh2213.
            152. Larrañeta E, Lutton REM, Woolfson AD, Donnelly RF.
               Microneedle arrays as transdermal and intradermal      doi: 10.1126/sciadv.adh2213
               drug delivery systems: materials science, manufacture   162. Li S, Li C, Khan MI, et al. Microneedle array facilitates
               and  commercial  development.  Mater  Sci  Eng,  R.  2016;   hepatic sinusoid construction in a large-scale liver-acinus-
               104:1-32.                                          chip microsystem. Microsyst Nanoeng. 2023;9(1):75.
               doi: 10.1016/j.mser.2016.03.001                    doi: 10.1038/s41378-023-00544-w
            Volume 10 Issue 4 (2024)                        82                                doi: 10.36922/ijb.1896





