Page 127 - IJB-5-1
P. 127
Hybrid polycaprolactone/hydrogel scaffold fabrication and in-process plasma treatment using PABS
925.921-925.921. engineering. J Biomed Mater Res Part A, 105(1): 274-283.
6. Black C R, Goriainov V, Gibbs D, et al., 2015, Bone tissue https://doi.org/10.1002/jbm.a.35684.
engineering. Curr Mol Biol Rep, 1(3): 132-140. https://doi. 18. Hoque M E, Chuan Y L, Pashby I, 2012, Extrusion based
org/10.1007/s40610-015-0022-2. rapid prototyping technique: An advanced platform for tissue
7. Asghari F, Samiei M, Adibkia K, et al., 2017, Biodegradable engineering scaffold fabrication. Biopolymers, 97(2): 83-93.
and biocompatible polymers for tissue engineering 19. Bellini A, 2002, Fused Deposition of Ceramics: A
application: A review. Artif Cells Nanomed Biotechnol, 45(2): Comprehensive Experimental, Analytical and Computational
185-192. https://doi.org/10.3109/21691401.2016.1146731. Study of Material Behavior, Fabrication Process and
8. Trombetta R, Inzana J A, Schwarz E M, et al., 2017, 3D printing equipment Desig. Philadelphia, PA: Drexel Universityn.
of calcium phosphate ceramics for bone tissue engineering 20. Almeida H, Bartolo P, Mota C, et al., 2010, Process equipment
and drug delivery. Ann Biomed Eng, 45(1): 23-44. https://doi. for rapid bioextrusion fabrication. Portuguese Patent Appl,
org/10.1007/s10439-016-1678-3. 104, 247.
9. Vacanti J P, Langer R, 1999, Tissue engineering: The design 21. Zhang L G, Fisher J P, Leong K, 2015, 3D Bioprinting and
and fabrication of living replacement devices for surgical Nanotechnology in Tissue Engineering and Regenerative
reconstruction and transplantation. Lancet, 354: S32-S34. Medicine. London: Academic Press.
https://doi.org/10.1016/S0140-6736(99)90247-7. 22. Giannitelli S, Mozetic P, Trombetta M, et al., 2015,
10. Mohanty A K, Misra M, Hinrichsen G, 2000, Biofibres, Combined additive manufacturing approaches in tissue
biodegradable polymers and biocomposites: An engineering. Acta Biomater, 24: 1-11. https://doi.org/10.1016/j.
overview. Macromol Mater Eng, 276(1): 1-24. https://doi. actbio.2015.06.032.
org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID- 23. Sobral J M, Caridade S G, Sousa R A, et al., 2011, Three-
MAME1>3.0.CO;2-W. dimensional plotted scaffolds with controlled pore size
11. Kumar A, Mandal S, Barui S, et al., 2016, Low temperature gradients: Effect of scaffold geometry on mechanical
additive manufacturing of three dimensional scaffolds for performance and cell seeding efficiency. Acta Biomater, 7(3):
bone-tissue engineering applications: Processing related 1009-1018. https://doi.org/10.1016/j.actbio.2010.11.003.
challenges and property assessment. Mater Sci Eng Rep, 103: 24. Oh S H, Lee J H, 2013, Hydrophilization of synthetic
1-39. https://doi.org/10.1016/j.mser.2016.01.001. biodegradable polymer scaffolds for improved cell/tissue
12. Forrestal D P, Klein T J, Woodruff M A, 2017, Challenges compatibility. Biomed Mater, 8(1): 014101. https://doi.
in engineering large customized bone constructs. Biotechnol org/10.1088/1748-6041/8/1/014101.
Bioeng, 114(6): 1129-1139. https://doi.org/10.1002/bit.26222. 25. Yang J, Wan Y, Yang J, et al., 2003, Plasma-treated, collagen-
13. Bártolo P, Chua C, Almeida H, et al., 2009, anchored polylactone: Its cell affinity evaluation under shear
Biomanufacturing for tissue engineering: Present and future or shear-free conditions. J Biomed Mater Res Part A, 67(4):
trends. Virtual Phys Prototyp, 4(4): 203-216. https://doi. 1139-1147. https://doi.org/10.1002/jbm.a.10034.
org/10.1080/17452750903476288. 26. Ozbolat I T, Chen H, Yu Y, 2014, Development of ‘multi-
14. Bártolo P J, Domingos M, Patrício T, et al., 2011, arm bioprinter’for hybrid biofabrication of tissue engineering
Biofabrication strategies for tissue engineering. Adv Model constructs. Robot Comput Integr Manuf, 30(3): 295-304.
Tissue Eng, 11: 137-176. https://doi.org/10.1007/978-94- https://doi.org/10.1016/j.rcim.2013.10.005.
007-1254-6_8. 27. Intranuovo F, Gristina R, Brun F, et al., 2014, Plasma
15. Bartolo P, Kruth J P, Silva J, et al., 2012, Biomedical production modification of PCL porous scaffolds fabricated by solvent-
of implants by additive electro-chemical and physical casting/particulate-leaching for tissue engineering. Plasma
processes. CIRP Ann Manuf Technol, 61(2): 635-655. https:// Process Polym, 11(2): 184-195. https://doi.org/10.1002/
doi.org/10.1016/j.cirp.2012.05.005. ppap.201300149.
16. Rutz A L, Hyland K E, Jakus A E, et al., 2015, A multimaterial 28. Intranuovo F, Gristina R, Fracassi L, et al., 2016, Plasma
bioink method for 3D printing tunable, cell-compatible processing of scaffolds for tissue engineering and regenerative
hydrogels. Adv Mater, 27(9): 1607-1614. https://doi. medicine. Plasma Chem Plasma Process, 36(1): 269-280.
org/10.1002/adma.201405076. https://doi.org/10.1007/s11090-015-9667-0.
17. Jakus A E, Shah R N, 2017, Multi and mixed 3D-printing of 29. Jeon O, Bouhadir K H, Mansour J M, et al., 2009,
graphene-hydroxyapatite hybrid materials for complex tissue Photocrosslinked alginate hydrogels with tunable biodegradation
8 International Journal of Bioprinting (2019)–Volume 5, Issue 1

