Page 127 - IJB-5-1
P. 127

Hybrid polycaprolactone/hydrogel scaffold fabrication and in-process plasma treatment using PABS
               925.921-925.921.                                    engineering. J Biomed Mater Res Part A, 105(1): 274-283.
           6.   Black C R, Goriainov V, Gibbs D, et al., 2015, Bone tissue   https://doi.org/10.1002/jbm.a.35684.
               engineering. Curr Mol Biol Rep, 1(3): 132-140. https://doi.  18.  Hoque M E, Chuan Y L, Pashby I, 2012, Extrusion based
               org/10.1007/s40610-015-0022-2.                      rapid prototyping technique: An advanced platform for tissue
           7.   Asghari F, Samiei M, Adibkia K, et al., 2017, Biodegradable   engineering scaffold fabrication. Biopolymers, 97(2): 83-93.
               and biocompatible polymers for tissue engineering   19.  Bellini A,  2002,  Fused  Deposition  of  Ceramics:  A
               application: A review. Artif Cells Nanomed Biotechnol, 45(2):   Comprehensive Experimental, Analytical and Computational
               185-192. https://doi.org/10.3109/21691401.2016.1146731.  Study  of Material  Behavior, Fabrication  Process and
           8.   Trombetta R, Inzana J A, Schwarz E M, et al., 2017, 3D printing   equipment Desig. Philadelphia, PA: Drexel Universityn.
               of calcium phosphate ceramics for bone tissue engineering   20.  Almeida H, Bartolo P, Mota C, et al., 2010, Process equipment
               and drug delivery. Ann Biomed Eng, 45(1): 23-44. https://doi.  for rapid bioextrusion fabrication. Portuguese Patent Appl,
               org/10.1007/s10439-016-1678-3.                      104, 247.
           9.   Vacanti J P, Langer R, 1999, Tissue engineering: The design   21.  Zhang L G, Fisher J P, Leong K, 2015, 3D Bioprinting and
               and fabrication  of living  replacement devices  for surgical   Nanotechnology  in Tissue Engineering  and Regenerative
               reconstruction  and transplantation.  Lancet, 354: S32-S34.   Medicine. London: Academic Press.
               https://doi.org/10.1016/S0140-6736(99)90247-7.  22.  Giannitelli S, Mozetic P,  Trombetta M, et al., 2015,
           10.  Mohanty  A  K,  Misra  M,  Hinrichsen  G,  2000,  Biofibres,   Combined additive manufacturing approaches in tissue
               biodegradable  polymers  and  biocomposites:  An    engineering. Acta Biomater, 24: 1-11. https://doi.org/10.1016/j.
               overview.  Macromol Mater Eng, 276(1): 1-24. https://doi.  actbio.2015.06.032.
               org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-  23.  Sobral J M, Caridade S G, Sousa R A, et al., 2011, Three-
               MAME1>3.0.CO;2-W.                                   dimensional  plotted scaffolds with controlled pore size
           11.  Kumar A, Mandal S, Barui S, et al., 2016, Low temperature   gradients:  Effect of scaffold geometry on mechanical
               additive  manufacturing  of  three  dimensional  scaffolds  for   performance and cell seeding efficiency. Acta Biomater, 7(3):
               bone-tissue  engineering  applications:  Processing related   1009-1018. https://doi.org/10.1016/j.actbio.2010.11.003.
               challenges and property assessment. Mater Sci Eng Rep, 103:   24.  Oh S H, Lee J H, 2013, Hydrophilization  of synthetic
               1-39. https://doi.org/10.1016/j.mser.2016.01.001.   biodegradable  polymer  scaffolds for improved  cell/tissue
           12.  Forrestal D P, Klein T J, Woodruff M A, 2017, Challenges   compatibility.  Biomed Mater, 8(1): 014101. https://doi.
               in engineering large customized bone constructs. Biotechnol   org/10.1088/1748-6041/8/1/014101.
               Bioeng, 114(6): 1129-1139. https://doi.org/10.1002/bit.26222.  25.  Yang J, Wan Y, Yang J, et al., 2003, Plasma-treated, collagen-
           13.  Bártolo  P,  Chua  C,  Almeida  H, et  al., 2009,   anchored polylactone: Its cell affinity evaluation under shear
               Biomanufacturing for tissue engineering: Present and future   or shear-free conditions. J Biomed Mater Res Part A, 67(4):
               trends.  Virtual Phys Prototyp, 4(4): 203-216. https://doi.  1139-1147. https://doi.org/10.1002/jbm.a.10034.
               org/10.1080/17452750903476288.                  26.  Ozbolat I T, Chen H, Yu Y, 2014, Development of ‘multi-
           14.  Bártolo P J,  Domingos M,  Patrício  T, et al., 2011,   arm bioprinter’for hybrid biofabrication of tissue engineering
               Biofabrication strategies for tissue engineering. Adv Model   constructs.  Robot  Comput Integr Manuf, 30(3): 295-304.
               Tissue Eng,  11:  137-176. https://doi.org/10.1007/978-94-  https://doi.org/10.1016/j.rcim.2013.10.005.
               007-1254-6_8.                                   27.  Intranuovo  F,  Gristina  R,  Brun  F, et al., 2014, Plasma
           15.  Bartolo P, Kruth J P, Silva J, et al., 2012, Biomedical production   modification of PCL porous scaffolds fabricated by solvent-
               of implants by additive  electro-chemical  and physical   casting/particulate-leaching  for tissue engineering.  Plasma
               processes. CIRP Ann Manuf Technol, 61(2): 635-655. https://  Process Polym, 11(2): 184-195. https://doi.org/10.1002/
               doi.org/10.1016/j.cirp.2012.05.005.                 ppap.201300149.
           16.  Rutz A L, Hyland K E, Jakus A E, et al., 2015, A multimaterial   28.  Intranuovo  F,  Gristina  R,  Fracassi  L, et al., 2016, Plasma
               bioink method for 3D  printing tunable, cell-compatible   processing of scaffolds for tissue engineering and regenerative
               hydrogels.  Adv Mater, 27(9): 1607-1614. https://doi.  medicine.  Plasma Chem Plasma Process, 36(1): 269-280.
               org/10.1002/adma.201405076.                         https://doi.org/10.1007/s11090-015-9667-0.
           17.  Jakus A E, Shah R N, 2017, Multi and mixed 3D-printing of   29.  Jeon O, Bouhadir K H, Mansour J M, et al., 2009,
               graphene-hydroxyapatite hybrid materials for complex tissue   Photocrosslinked alginate hydrogels with tunable biodegradation

           8                           International Journal of Bioprinting (2019)–Volume 5, Issue 1
   122   123   124   125   126   127   128   129   130   131   132